Solve exercises02 :3

amethyst
Shad Amethyst 1 year ago
parent 008fc3bfa1
commit 9f2a8302e9

@ -30,4 +30,4 @@ theories/type_systems/warmup/warmup.v
#theories/type_systems/warmup/warmup_sol.v
theories/type_systems/stlc/exercises01.v
#theories/type_systems/stlc/exercises01_sol.v
#theories/type_systems/stlc/exercises02.v
theories/type_systems/stlc/exercises02.v

@ -12,44 +12,63 @@ From semantics.ts.stlc Require untyped types.
(** You will find it very helpful to separately derive the structural rules of the
structural semantics for the contextual semantics. *)
Ltac ectx_step K :=
eapply (Ectx_step _ _ K); subst; eauto.
Lemma contextual_step_beta x e e':
is_val e' contextual_step ((λ: x, e) e') (subst' x e' e).
Proof.
(* TODO: exercise *)
Admitted.
intro H_val.
ectx_step HoleCtx.
Qed.
Lemma contextual_step_app_r (e1 e2 e2': expr) :
contextual_step e2 e2'
contextual_step (e1 e2) (e1 e2').
Proof.
(* TODO: exercise *)
Admitted.
intro H_step.
inversion H_step.
induction K eqn:H_K.
(* I am a smart foxxo >:3 *)
all: ectx_step (AppRCtx e1 K).
Qed.
Ltac is_val_to_val v H :=
rewrite (is_val_spec _) in H; destruct H as [v H]; apply of_to_val in H; symmetry in H.
Lemma contextual_step_app_l (e1 e1' e2: expr) :
is_val e2
contextual_step e1 e1'
contextual_step (e1 e2) (e1' e2).
Proof.
(* TODO: exercise *)
Admitted.
intros H_val H_step.
is_val_to_val v H_val.
subst.
inversion H_step.
induction K eqn:H_K.
all: ectx_step (AppLCtx K v).
Qed.
Lemma contextual_step_plus_red (n1 n2 n3: Z) :
(n1 + n2)%Z = n3
contextual_step (n1 + n2)%E n3.
Proof.
(* TODO: exercise *)
Admitted.
intro H_plus.
ectx_step HoleCtx.
Qed.
Lemma contextual_step_plus_r e1 e2 e2' :
contextual_step e2 e2'
contextual_step (Plus e1 e2) (Plus e1 e2').
Proof.
(* TODO: exercise *)
Admitted.
intro H_step.
inversion H_step.
ectx_step (PlusRCtx e1 K).
Qed.
Lemma contextual_step_plus_l e1 e1' e2 :
@ -57,18 +76,32 @@ Lemma contextual_step_plus_l e1 e1' e2 :
contextual_step e1 e1'
contextual_step (Plus e1 e2) (Plus e1' e2).
Proof.
(* TODO: exercise *)
Admitted.
intro H_val.
is_val_to_val v H_val.
intro H_step.
inversion H_step.
ectx_step (PlusLCtx K v).
Qed.
(** We register these lemmas as hints for [eauto]. *)
#[global]
Hint Resolve contextual_step_beta contextual_step_app_l contextual_step_app_r contextual_step_plus_red contextual_step_plus_l contextual_step_plus_r : core.
Ltac step_ind H := induction H as [
name e_λ e_v
| e_fn e_fn' e_v H_val H_fn_step IH
| e_fn e_arg e_arg' H_arg_step IH
| n1 n2 n_sum H_plus
| e_l e_l' e_r H_val H_l_step IH
| e_l e_r e_r' H_r_step IH
].
Lemma step_contextual_step e1 e2: step e1 e2 contextual_step e1 e2.
Proof.
(* TODO: exercise *)
Admitted.
intro H_step.
step_ind H_step; eauto.
Qed.
(** Now the other direction. *)
@ -78,8 +111,19 @@ Admitted.
Lemma contextual_step_step e1 e2:
contextual_step e1 e2 step e1 e2.
Proof.
(* TODO: exercise *)
Admitted.
intro H_cstep.
inversion H_cstep as [K e1' e2' H_eq1 H_eq2 H_bstep]; subst.
inversion H_bstep as [
name body arg H_val H_eq1 H_eq2 H_eq3
| e1 e2 n1 n2 n_sum H_n1 H_n2 H_sum H_eq1 H_eq2
]; subst.
(*
Here we do an induction on K, and we let eauto solve it for us.
In practice, each case of the induction on K can be solved quite easily,
as the induction hypothesis has us prove a `contextual_step`, for which we have plenty of useful lemmas.
*)
all: induction K; unfold fill; eauto.
Qed.
@ -89,51 +133,147 @@ Section scott.
Import semantics.ts.stlc.untyped.
(** Scott encoding of Booleans *)
Definition true_scott : val := 0(* TODO *).
Definition false_scott : val := 0(* TODO *).
Definition true_scott : val := (λ: "t" "f", "t").
Definition false_scott : val := (λ: "t" "f", "f").
(* Lemma steps_beta e_λ e_arg *)
Ltac rtc_single step_cons := eapply rtc_l; last reflexivity; eapply step_cons; auto.
Lemma true_red (v1 v2 : val) :
closed [] v1
closed [] v2
rtc step (true_scott v1 v2) v1.
Proof.
(* TODO: exercise *)
Admitted.
intros H_cl1 H_cl2.
unfold true_scott.
etransitivity.
eapply steps_app_l; auto.
rtc_single StepBeta.
simpl.
etransitivity.
rtc_single StepBeta.
simpl.
rewrite subst_closed_nil; auto.
reflexivity.
Qed.
Lemma steps_plus_r (e1 e2 e2': expr) :
rtc step e2 e2' rtc step (e1 + e2)%E (e1 + e2')%E.
Proof.
induction 1; subst.
reflexivity.
etransitivity; last exact IHrtc.
rtc_single StepPlusR.
Qed.
Lemma steps_plus_l (e1 e1' e2: expr) :
is_val e2
rtc step e1 e1'
rtc step (e1 + e2)%E (e1' + e2)%E.
Proof.
induction 2; subst.
reflexivity.
etransitivity; last exact IHrtc.
rtc_single StepPlusL.
Qed.
Lemma lam_is_val name e_body :
is_val (Lam name e_body).
Proof.
unfold is_val.
intuition.
Qed.
Lemma int_is_val n :
is_val (LitInt n).
Proof.
unfold is_val.
intuition.
Qed.
Hint Resolve lam_is_val int_is_val: core.
(* TODO: recursively traverse the goal for subst instances? *)
Ltac auto_subst :=
(rewrite subst_closed_nil; last assumption) ||
(unfold subst'; unfold subst; simpl; fold subst).
(* This is ridiculously powerful, although it only works when you know all the terms *)
Ltac auto_step :=
match goal with
| [ |- rtc step (App ?e_l ?e_v) ?e_target ] =>
etransitivity;
first eapply steps_app_r;
first auto_step;
simpl;
etransitivity;
first eapply steps_app_l;
first auto;
first auto_step;
simpl;
repeat auto_subst;
rtc_single StepBeta;
simpl;
done
| [ |- rtc step (of_val ?v) ?e_target ] => reflexivity
| [ |- rtc step (Lam ?name ?body) ?e_target ] => reflexivity
| [ |- rtc step (LitInt ?n) ?e_target ] => reflexivity
| [ |- rtc step (Plus ?e1 ?e2) ?e_target ] =>
etransitivity;
first eapply steps_plus_r;
first auto_step;
etransitivity;
first eapply steps_plus_l;
first auto;
first auto_step;
rtc_single StepPlusRed;
done
| [ |- rtc step (subst ?var ?thing) ?e_target ] =>
repeat auto_subst;
auto_step
end
.
Ltac multi_step :=
repeat (reflexivity || (
etransitivity;
first auto_step;
first repeat auto_subst
)).
Lemma false_red (v1 v2 : val) :
closed [] v1
closed [] v2
rtc step (false_scott v1 v2) v2.
Proof.
(* TODO: exercise *)
Admitted.
intros H_cl1 H_cl2.
auto_step.
Qed.
(** Scott encoding of Pairs *)
Definition pair_scott : val := 0(* TODO *).
Definition pair_scott : val := (λ: "lhs" "rhs" "f", ("f" "lhs" "rhs")).
Definition fst_scott : val := 0(* TODO *).
Definition snd_scott : val := 0(* TODO *).
Definition fst_scott : val := (λ: "pair", ("pair" (λ: "lhs" "rhs", "lhs"))).
Definition snd_scott : val := (λ: "pair", ("pair" (λ: "lhs" "rhs", "rhs"))).
Lemma fst_red (v1 v2 : val) :
is_closed [] v1
is_closed [] v2
rtc step (fst_scott (pair_scott v1 v2)) v1.
Proof.
(* TODO: exercise *)
Admitted.
intros H_cl1 H_cl2.
multi_step.
Qed.
Lemma snd_red (v1 v2 : val) :
is_closed [] v1
is_closed [] v2
rtc step (snd_scott (pair_scott v1 v2)) v2.
Proof.
(* TODO: exercise *)
Admitted.
intros H_cl1 H_cl2.
multi_step.
Qed.
End scott.
Import semantics.ts.stlc.types.
@ -151,7 +291,13 @@ Inductive src_expr :=
(** The erasure function *)
Fixpoint erase (E: src_expr) : expr :=
0 (* TODO *).
match E with
| ELitInt n => LitInt n
| EVar x => Var x
| ELam x A e => Lam x (erase e)
| EApp e1 e2 => App (erase e1) (erase e2)
| EPlus e1 e2 => Plus (erase e1) (erase e2)
end.
Reserved Notation "Γ '⊢S' e : A" (at level 74, e, A at next level).
Inductive src_typed : typing_context src_expr type Prop :=
@ -177,20 +323,51 @@ where "Γ '⊢S' E : A" := (src_typed Γ E%E A%ty) : FType_scope.
Lemma type_erasure_correctness Γ E A:
(Γ S E : A)%ty (Γ erase E : A)%ty.
Proof.
(* TODO: exercise *)
Admitted.
intro H_styped.
induction H_styped; unfold erase; eauto.
Qed.
(** ** Exercise 4: Unique Typing *)
Lemma src_typing_unique Γ E A B:
(Γ S E : A)%ty (Γ S E : B)%ty A = B.
Proof.
(* TODO: exercise *)
Admitted.
(** TODO: Is runtime typing (Curry-style) also unique? Prove it or give a counterexample. *)
intro H_typed.
revert B.
induction H_typed as [
Γ x A H_x_ty
| Γ x e_body A1 A2 H_body_ty IH
| Γ n
| Γ e_fn e_arg A1 A2 H_fn_ty H_arg_ty IH
| Γ e1 e2 H_e1_ty H_e2_ty
]; intro B; intro H_typed'.
all: inversion H_typed' as [
Γ' y B' H_y_ty
| Γ' y e_body' B1 B2 H_body_ty'
| Γ' n'
| Γ' e_fn' e_arg' B1 B2 H_fn_ty' H_arg_ty'
| Γ' e3 e4 H_e3_ty H_e4_ty
]; subst; try auto.
- rewrite H_y_ty in H_x_ty; injection H_x_ty.
intuition.
- rewrite (IH B2); eauto.
- remember (H_arg_ty _ H_fn_ty') as H_eq.
injection H_eq.
intuition.
Qed.
Lemma syn_typing_not_unique:
(Γ: typing_context) (e: expr) (A B: type),
(Γ e: A)%ty (Γ e: B)%ty A B.
Proof.
exists .
exists (λ: "x", "x")%E.
exists (Int Int)%ty.
exists ((Int Int) (Int Int))%ty.
repeat split.
3: discriminate.
all: apply typed_lam; eauto.
Qed.
(** ** Exercise 5: Type Inference *)
@ -216,25 +393,90 @@ Fixpoint infer_type (Γ: ctx) E :=
| None => None
end
(* TODO: complete the definition for the remaining cases *)
| ELitInt l => None (* TODO *)
| EApp E1 E2 => None (* TODO *)
| EPlus E1 E2 => None (* TODO *)
| ELitInt l => Some (Int) (* TODO *)
| EApp E1 E2 => match infer_type Γ E1, infer_type Γ E2 with
| Some (Fun A B), Some A' => (if type_eq A A' then Some B else None)
| _, _ => None
end
| EPlus E1 E2 => match infer_type Γ E1, infer_type Γ E2 with
| Some Int, Some Int => Some Int
| _, _ => None
end
| ELam BAnon A E => None
end.
Ltac destruct_match H H_eq :=
repeat match goal with
| [H: match ?matcher with _ => _ end = Some _ |- _] =>
induction matcher eqn:H_eq; try discriminate H
end.
(** Prove both directions of the correctness theorem. *)
Lemma infer_type_typing Γ E A:
infer_type Γ E = Some A (Γ S E : A)%ty.
Proof.
(* TODO: exercise *)
Admitted.
revert Γ A.
induction E; intros Γ B H_infer; inversion H_infer; subst; eauto.
- destruct_match H0 H_x.
destruct_match H0 H_eq.
injection H0; intro H_eq'.
subst.
eapply src_typed_lam.
exact (IHE _ _ H_eq).
- destruct_match H0 H_E1.
destruct_match H0 H_a.
destruct_match H0 H_E2.
destruct_match H0 H_eq.
clear IHt1 IHt2.
apply Is_true_eq_left in H_eq.
rewrite type_eq_iff in H_eq.
injection H0; intro H_eq'.
subst.
eapply src_typed_app.
exact (IHE1 _ _ H_E1).
exact (IHE2 _ _ H_E2).
- destruct_match H0 H_E1.
destruct_match H0 H_a.
destruct_match H0 H_E2.
rename a0 into b.
destruct_match H0 H_b.
injection H0; intro H_eq.
subst.
eapply src_typed_add.
exact (IHE1 _ _ H_E1).
exact (IHE2 _ _ H_E2).
Qed.
Lemma typing_infer_type Γ E A:
(Γ S E : A)%ty infer_type Γ E = Some A.
Proof.
(* TODO: exercise *)
Admitted.
intro H_typed.
induction H_typed; simpl; try eauto.
- induction (infer_type (<[x := A]> Γ) E) eqn:H1; try discriminate IHH_typed.
rewrite H1.
injection IHH_typed; intro H_eq.
rewrite H_eq.
intuition.
- induction (infer_type Γ E1) eqn:H1; try discriminate IHH_typed1.
injection IHH_typed1; intro H_eq; subst.
induction (infer_type Γ E2) eqn:H2; try discriminate IHH_typed2.
injection IHH_typed2; intro H_eq; subst.
destruct (type_eq A A) eqn:H_AA.
+ reflexivity.
+ (* idk why I struggled so much to manipulate H_AA *)
assert (A = A) as H_AA_true by reflexivity.
rewrite <-type_eq_iff in H_AA_true.
apply Is_true_eq_true in H_AA_true.
rewrite H_AA_true in H_AA.
discriminate H_AA.
- induction (infer_type Γ E1) eqn:H1; try discriminate IHH_typed.
injection IHH_typed1; intro H_eq; subst.
induction (infer_type Γ E2) eqn:H2; try discriminate IHH_typed2.
injection IHH_typed2; intro H_eq; subst.
+ reflexivity.
+ discriminate IHH_typed1.
Qed.
@ -246,28 +488,88 @@ Admitted.
*)
Section give_example.
Definition ust : expr := 0 (* TODO *).
Definition omega : expr := (λ: "x", "x" "x").
(* This is simply binding Ω to a variable, without using it. *)
Definition ust : expr := ((λ: "x" "y", "y") (λ: "_", omega omega) 1)%E.
Lemma ust_safe e':
rtc step ust e' is_val e' reducible e'.
Proof.
(* TODO: exercise *)
Admitted.
intro H_steps.
assert (e' = 1 e' = ((λ: "y", "y") 1)%E e' = ust).
{
refine (rtc_ind_r (λ (e: expr), e = 1 e = ((λ: "y", "y") 1)%E e = ust) ust _ _ _ H_steps).
- right; right; reflexivity.
- intros y z H_steps' H_step_yz H_y.
destruct H_y; subst; try val_no_step.
destruct H; subst.
+ inversion H_step_yz; subst; try val_no_step; simpl.
left; reflexivity.
+ inversion H_step_yz; subst; try val_no_step; simpl.
inversion H3; subst; try val_no_step; simpl.
right; left; reflexivity.
}
destruct H as [ H | [ H | H ]].
- left.
rewrite H.
unfold is_val; intuition.
- right.
exists 1.
subst.
apply StepBeta.
unfold is_val; intuition.
- right.
exists ((λ: "y", "y") 1)%E.
subst.
apply StepAppL.
unfold is_val; intuition.
apply StepBeta.
unfold is_val; intuition.
Qed.
Lemma rec_type_contra A B:
(A B)%ty = A -> False.
Proof.
revert B.
induction A.
- intros B H_eq.
discriminate H_eq.
- intros B H_eq.
injection H_eq.
intros H_eqb H_eqA1.
eapply IHA1.
exact H_eqA1.
Qed.
Lemma ust_no_type Γ A:
¬ (Γ ust : A)%ty.
Proof.
(* TODO: exercise *)
Admitted.
intro H_typed.
inversion H_typed; subst; rename H2 into H_typed_let_omega.
inversion H_typed_let_omega; subst; rename H5 into H_typed_lambda_omega.
inversion H_typed_lambda_omega; subst; rename H5 into H_typed_omega_omega.
inversion H_typed_omega_omega; subst; rename H6 into H_typed_omega.
inversion H_typed_omega; subst; rename H6 into H_typed_omega_inner.
inversion H_typed_omega_inner; subst.
rename H5 into H_typed_x.
rename H7 into H_typed_x'.
inversion H_typed_x; subst; clear H_typed_x; rename H1 into H_typed_x.
inversion H_typed_x'; subst; clear H_typed_x'; rename H1 into H_typed_x'.
rewrite lookup_insert in H_typed_x.
rewrite lookup_insert in H_typed_x'.
injection H_typed_x; intro H_eq1.
injection H_typed_x'; intro H_eq2.
rewrite H_eq1 in H_eq2.
exact (rec_type_contra _ _ H_eq2).
Qed.
End give_example.
Section prove_non_existence.
(* Section prove_non_existence.
Lemma no_ust :
e, ( e', rtc step e e' is_val e' reducible e') A, ( e : A)%ty.
Proof.
(* TODO: exercise *)
Admitted.
End prove_non_existence.
End prove_non_existence. *)

Loading…
Cancel
Save