Answer question 3.1

amethyst
Shad Amethyst 12 months ago
parent 518b4cb20c
commit ef2a8c2b75

@ -2,6 +2,19 @@ From stdpp Require Import gmap base relations.
From iris Require Import prelude.
From semantics.ts.systemf Require Import lang notation types tactics.
(*
Exercise 3.1:
With V[A->B] = {v | v', v' V[A] -> v v' E[B]}
The set V[A->B] is equal to:
V[A->B] = {v | v', v' V[A], w, v v' | w, w V[B]}
According to big step semantics, `v v' | w` inverts to `v | λx.e` and `e[v'/x] | w`.
Assuming that `v` and `v'` are closed, we have `e[v'/x]` closed, and thus `e[v'/x] E[B]`.
Since `v` is a value and `v | λx.e`, we have `v = λx.e`.
We thus have `{v | v', v' V[A] -> v v' E[B]} = {λx.e | v', v' V[A] -> e[v'/x] E[B]}`,
after which we can carry out our proof as before.
*)
(** Exercise 3 (LN Exercise 22): Universal Fun *)
Definition fun_comp : val :=
@ -10,7 +23,7 @@ Definition fun_comp_type : type :=
#0 (* TODO *).
Lemma fun_comp_typed :
TY 0; fun_comp : fun_comp_type.
Proof.
Proof.
(* should be solved by solve_typing. *)
(* TODO: exercise *)
Admitted.
@ -22,7 +35,7 @@ Definition swap_args_type : type :=
#0 (* TODO *).
Lemma swap_args_typed :
TY 0; swap_args : swap_args_type.
Proof.
Proof.
(* should be solved by solve_typing. *)
(* TODO: exercise *)
Admitted.
@ -34,7 +47,7 @@ Definition lift_prod_type : type :=
#0 (* TODO *).
Lemma lift_prod_typed :
TY 0; lift_prod : lift_prod_type.
Proof.
Proof.
(* should be solved by solve_typing. *)
(* TODO: exercise *)
Admitted.
@ -46,7 +59,7 @@ Definition lift_sum_type : type :=
#0 (* TODO *).
Lemma lift_sum_typed :
TY 0; lift_sum : lift_sum_type.
Proof.
Proof.
(* should be solved by solve_typing. *)
(* TODO: exercise *)
Admitted.
@ -74,7 +87,7 @@ Notation "∃: x , τ" :=
(at level 100, τ at level 200) : PType_scope.
Fixpoint debruijn (m: gmap string nat) (A: ptype) : option type :=
None (* FIXME *).
None (* FIXME *).
(* Example *)
Goal debruijn (: "x", : "y", "x" "y")%pty = Some (: : #1 #0)%ty.
@ -96,5 +109,3 @@ Proof.
(* Should be solved by reflexivity. *)
(* TODO: exercise *)
Admitted.

Loading…
Cancel
Save