You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
semantics-2023/theories/type_systems/stlc/exercises02.v

273 lines
6.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

From stdpp Require Import gmap base relations tactics.
From iris Require Import prelude.
From semantics.ts.stlc Require Import lang notation.
From semantics.ts.stlc Require untyped types.
(** README: Please also download the assigment sheet as a *.pdf from here:
https://cms.sic.saarland/semantics_ws2324/materials/
It contains additional explanation and excercises. **)
(** ** Exercise 1: Prove that the structural and contextual semantics are equivalent. *)
(** You will find it very helpful to separately derive the structural rules of the
structural semantics for the contextual semantics. *)
Lemma contextual_step_beta x e e':
is_val e' contextual_step ((λ: x, e) e') (subst' x e' e).
Proof.
(* TODO: exercise *)
Admitted.
Lemma contextual_step_app_r (e1 e2 e2': expr) :
contextual_step e2 e2'
contextual_step (e1 e2) (e1 e2').
Proof.
(* TODO: exercise *)
Admitted.
Lemma contextual_step_app_l (e1 e1' e2: expr) :
is_val e2
contextual_step e1 e1'
contextual_step (e1 e2) (e1' e2).
Proof.
(* TODO: exercise *)
Admitted.
Lemma contextual_step_plus_red (n1 n2 n3: Z) :
(n1 + n2)%Z = n3
contextual_step (n1 + n2)%E n3.
Proof.
(* TODO: exercise *)
Admitted.
Lemma contextual_step_plus_r e1 e2 e2' :
contextual_step e2 e2'
contextual_step (Plus e1 e2) (Plus e1 e2').
Proof.
(* TODO: exercise *)
Admitted.
Lemma contextual_step_plus_l e1 e1' e2 :
is_val e2
contextual_step e1 e1'
contextual_step (Plus e1 e2) (Plus e1' e2).
Proof.
(* TODO: exercise *)
Admitted.
(** We register these lemmas as hints for [eauto]. *)
#[global]
Hint Resolve contextual_step_beta contextual_step_app_l contextual_step_app_r contextual_step_plus_red contextual_step_plus_l contextual_step_plus_r : core.
Lemma step_contextual_step e1 e2: step e1 e2 contextual_step e1 e2.
Proof.
(* TODO: exercise *)
Admitted.
(** Now the other direction. *)
(* You may find it helpful to introduce intermediate lemmas. *)
Lemma contextual_step_step e1 e2:
contextual_step e1 e2 step e1 e2.
Proof.
(* TODO: exercise *)
Admitted.
(** ** Exercise 2: Scott encodings *)
Section scott.
(* take a look at untyped.v for usefull lemmas and definitions *)
Import semantics.ts.stlc.untyped.
(** Scott encoding of Booleans *)
Definition true_scott : val := 0(* TODO *).
Definition false_scott : val := 0(* TODO *).
Lemma true_red (v1 v2 : val) :
closed [] v1
closed [] v2
rtc step (true_scott v1 v2) v1.
Proof.
(* TODO: exercise *)
Admitted.
Lemma false_red (v1 v2 : val) :
closed [] v1
closed [] v2
rtc step (false_scott v1 v2) v2.
Proof.
(* TODO: exercise *)
Admitted.
(** Scott encoding of Pairs *)
Definition pair_scott : val := 0(* TODO *).
Definition fst_scott : val := 0(* TODO *).
Definition snd_scott : val := 0(* TODO *).
Lemma fst_red (v1 v2 : val) :
is_closed [] v1
is_closed [] v2
rtc step (fst_scott (pair_scott v1 v2)) v1.
Proof.
(* TODO: exercise *)
Admitted.
Lemma snd_red (v1 v2 : val) :
is_closed [] v1
is_closed [] v2
rtc step (snd_scott (pair_scott v1 v2)) v2.
Proof.
(* TODO: exercise *)
Admitted.
End scott.
Import semantics.ts.stlc.types.
(** ** Exercise 3: type erasure *)
(** Source terms *)
Inductive src_expr :=
| ELitInt (n: Z)
(* Base lambda calculus *)
| EVar (x : string)
| ELam (x : binder) (A: type) (e : src_expr)
| EApp (e1 e2 : src_expr)
(* Base types and their operations *)
| EPlus (e1 e2 : src_expr).
(** The erasure function *)
Fixpoint erase (E: src_expr) : expr :=
0 (* TODO *).
Reserved Notation "Γ '⊢S' e : A" (at level 74, e, A at next level).
Inductive src_typed : typing_context src_expr type Prop :=
| src_typed_var Γ x A :
Γ !! x = Some A
Γ S (EVar x) : A
| src_typed_lam Γ x E A B :
(<[ x := A]> Γ) S E : B
Γ S (ELam (BNamed x) A E) : (A B)
| src_typed_int Γ z :
Γ S (ELitInt z) : Int
| src_typed_app Γ E1 E2 A B :
Γ S E1 : (A B)
Γ S E2 : A
Γ S EApp E1 E2 : B
| src_typed_add Γ E1 E2 :
Γ S E1 : Int
Γ S E2 : Int
Γ S EPlus E1 E2 : Int
where "Γ '⊢S' E : A" := (src_typed Γ E%E A%ty) : FType_scope.
#[export] Hint Constructors src_typed : core.
Lemma type_erasure_correctness Γ E A:
(Γ S E : A)%ty (Γ erase E : A)%ty.
Proof.
(* TODO: exercise *)
Admitted.
(** ** Exercise 4: Unique Typing *)
Lemma src_typing_unique Γ E A B:
(Γ S E : A)%ty (Γ S E : B)%ty A = B.
Proof.
(* TODO: exercise *)
Admitted.
(** TODO: Is runtime typing (Curry-style) also unique? Prove it or give a counterexample. *)
(** ** Exercise 5: Type Inference *)
Fixpoint type_eq A B :=
match A, B with
| Int, Int => true
| Fun A B, Fun A' B' => type_eq A A' && type_eq B B'
| _, _ => false
end.
Lemma type_eq_iff A B: type_eq A B A = B.
Proof.
induction A in B |-*; destruct B; simpl; naive_solver.
Qed.
Notation ctx := (gmap string type).
Fixpoint infer_type (Γ: ctx) E :=
match E with
| EVar x => Γ !! x
| ELam (BNamed x) A E =>
match infer_type (<[x := A]> Γ) E with
| Some B => Some (Fun A B)
| None => None
end
(* TODO: complete the definition for the remaining cases *)
| ELitInt l => None (* TODO *)
| EApp E1 E2 => None (* TODO *)
| EPlus E1 E2 => None (* TODO *)
| ELam BAnon A E => None
end.
(** Prove both directions of the correctness theorem. *)
Lemma infer_type_typing Γ E A:
infer_type Γ E = Some A (Γ S E : A)%ty.
Proof.
(* TODO: exercise *)
Admitted.
Lemma typing_infer_type Γ E A:
(Γ S E : A)%ty infer_type Γ E = Some A.
Proof.
(* TODO: exercise *)
Admitted.
(** ** Exercise 6: untypable, safe term *)
(* The exercise asks you to:
"Give one example if there is such an expression, otherwise prove their non-existence."
So either finish one section or the other.
*)
Section give_example.
Definition ust : expr := 0 (* TODO *).
Lemma ust_safe e':
rtc step ust e' is_val e' reducible e'.
Proof.
(* TODO: exercise *)
Admitted.
Lemma ust_no_type Γ A:
¬ (Γ ust : A)%ty.
Proof.
(* TODO: exercise *)
Admitted.
End give_example.
Section prove_non_existence.
Lemma no_ust :
e, ( e', rtc step e e' is_val e' reducible e') A, ( e : A)%ty.
Proof.
(* TODO: exercise *)
Admitted.
End prove_non_existence.