Implement most of proposition 2.1

main
Shad Amethyst 7 months ago
parent 4d8a4d0f1a
commit fc12acb37b

@ -64,105 +64,354 @@ where
end RubinActions
lemma lemma_2_2 (G: Type _) {α : Type _} [Group G] [TopologicalSpace α] [ContinuousMulAction G α] [FaithfulSMul G α]
[T2Space α] [h_lm : LocallyMoving G α]
{U : Set α} (U_open : IsOpen U) (U_nonempty : Set.Nonempty U) :
Monoid.exponent (RigidStabilizer G U) = 0 :=
by
by_contra exp_ne_zero
let ⟨p, ⟨g, g_in_ristU⟩, n, p_in_U, n_pos, hpgn, n_eq_Sup⟩ := Period.period_from_exponent U U_nonempty exp_ne_zero
simp at hpgn
let ⟨V', V'_open, p_in_V', disj'⟩ := disjoint_nbhd_fin (smul_injective_within_period hpgn)
let V := U ∩ V'
have V_open : IsOpen V := U_open.inter V'_open
have p_in_V : p ∈ V := ⟨p_in_U, p_in_V'⟩
have disj : ∀ (i j : Fin n), i ≠ j → Disjoint (g ^ (i : ) •'' V) (g ^ (j : ) •'' V) := by
intro i j i_ne_j
apply Set.disjoint_of_subset
· apply smulImage_subset
apply Set.inter_subset_right
· apply smulImage_subset
apply Set.inter_subset_right
exact disj' i j i_ne_j
let ⟨h, h_in_ristV, h_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem p_in_V)
have hg_in_ristU : h * g ∈ RigidStabilizer G U := by
simp [RigidStabilizer]
intro x x_notin_U
rw [mul_smul]
rw [g_in_ristU _ x_notin_U]
have x_notin_V : x ∉ V := fun x_in_V => x_notin_U x_in_V.left
rw [h_in_ristV _ x_notin_V]
let ⟨q, q_in_V, hq_ne_q ⟩ := faithful_rigid_stabilizer_moves_point h_in_ristV h_ne_one
have gpowi_q_notin_V : ∀ (i : Fin n), (i : ) > 0 → g ^ (i : ) • q ∉ V := by
apply smulImage_distinct_of_disjoint_exp n_pos disj
exact q_in_V
-- We have (hg)^i q = g^i q for all 0 < i < n
have hgpow_eq_gpow : ∀ (i : Fin n), (h * g) ^ (i : ) • q = g ^ (i : ) • q := by
intro ⟨i, i_lt_n⟩
simp
induction i with
| zero => simp
| succ i' IH =>
have i'_lt_n: i' < n := Nat.lt_of_succ_lt i_lt_n
have IH := IH i'_lt_n
rw [smul_succ]
rw [IH]
rw [smul_succ]
rw [mul_smul]
rw [<-smul_succ]
-- We can show that `g^(Nat.succ i') • q ∉ V`,
-- which means that with `h` in `RigidStabilizer G V`, `h` fixes that point
apply h_in_ristV (g^(Nat.succ i') • q)
let i'₂ : Fin n := ⟨Nat.succ i', i_lt_n⟩
have h_eq: Nat.succ i' = (i'₂ : ) := by simp
rw [h_eq]
apply smulImage_distinct_of_disjoint_exp
· exact n_pos
· exact disj
· exact q_in_V
· simp
-- Combined with `g^i • q ≠ q`, this yields `(hg)^i • q ≠ q` for all `0 < i < n`
have hgpow_moves : ∀ (i : Fin n), 0 < (i : ) → (h*g)^(i : ) • q ≠ q := by
intro ⟨i, i_lt_n⟩ i_pos
simp at i_pos
rw [hgpow_eq_gpow]
simp
by_contra h'
apply gpowi_q_notin_V ⟨i, i_lt_n⟩
exact i_pos
simp (config := {zeta := false}) only []
rw [h']
exact q_in_V
-- This even holds for `i = n`
have hgpown_moves : (h * g) ^ n • q ≠ q := by
-- Rewrite (hg)^n • q = h * g^n • q
rw [<-Nat.succ_pred n_pos.ne.symm]
rw [pow_succ]
have h_eq := hgpow_eq_gpow ⟨Nat.pred n, Nat.pred_lt_self n_pos⟩
simp at h_eq
rw [mul_smul, h_eq, <-mul_smul, mul_assoc, <-pow_succ]
rw [<-Nat.succ_eq_add_one, Nat.succ_pred n_pos.ne.symm]
-- We first eliminate `g^n • q` by proving that `n = Period g q`
have period_gq_eq_n : Period.period q g = n := by
apply ge_antisymm
{
apply Period.notfix_le_period'
· exact n_pos
· apply Period.period_pos'
· exact Set.nonempty_of_mem p_in_U
· exact exp_ne_zero
· exact q_in_V.left
· exact g_in_ristU
· intro i i_pos
rw [<-hgpow_eq_gpow]
apply hgpow_moves i i_pos
}
{
rw [n_eq_Sup]
apply Period.period_le_Sup_periods'
· exact Set.nonempty_of_mem p_in_U
· exact exp_ne_zero
· exact q_in_V.left
· exact g_in_ristU
}
rw [mul_smul, <-period_gq_eq_n]
rw [Period.pow_period_fix]
-- Finally, we have `h • q ≠ q`
exact hq_ne_q
-- Finally, we derive a contradiction
have ⟨period_hg_pos, period_hg_le_n⟩ := Period.zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero ⟨q, q_in_V.left⟩ ⟨h * g, hg_in_ristU⟩
simp at period_hg_pos
simp at period_hg_le_n
rw [<-n_eq_Sup] at period_hg_le_n
cases (lt_or_eq_of_le period_hg_le_n) with
| inl period_hg_lt_n =>
apply hgpow_moves ⟨Period.period q (h * g), period_hg_lt_n⟩
exact period_hg_pos
simp
apply Period.pow_period_fix
| inr period_hg_eq_n =>
apply hgpown_moves
rw [<-period_hg_eq_n]
apply Period.pow_period_fix
section proposition_2_1
variable {G α : Type _}
variable [Group G]
variable [MulAction G α]
variable [TopologicalSpace α]
variable [T2Space α]
def AlgebraicSubgroup {G : Type _} [Group G] (f : G) : Set G :=
(fun g : G => g^12) '' { g : G | IsAlgebraicallyDisjoint f g }
lemma proposition_2_1 (f : G) :
Set.centralizer { g^12 | (g : G) (_ : AlgebraicallyDisjoint f g) } = RigidStabilizer G (RegularSupport α f) :=
-- TODO: WIP, can't seem to be able to construct a set U that fulfills all the conditions
lemma open_disj_of_not_support_subset_rsupp {G α : Type _}
[Group G] [TopologicalSpace α] [ContinuousMulAction G α] [T2Space α] [h_fsm : FaithfulSMul G α]
[h_lm : LocallyMoving G α]
{f h : G} (not_support_subset_rsupp : ¬Support α h ⊆ RegularSupport α f):
∃ V : Set α, V ⊆ Support α h ∧ Set.Nonempty V ∧ IsOpen V ∧ Disjoint V (Support α f) :=
by
sorry
have v_exists := by
rw [Set.not_subset] at not_support_subset_rsupp
exact not_support_subset_rsupp
let ⟨v, ⟨v_in_supp, v_notin_rsupp⟩⟩ := v_exists
have v_notin_supp_f : v ∉ Support α f := by
intro h₁
exact v_notin_rsupp (support_subset_regularSupport h₁)
let U := interior (Support α h \ Support α f)
have U_open : IsOpen U := by simp
have U_subset_supp_h : U ⊆ Support α h := by
calc
U ⊆ (Support α h \ Support α f) := interior_subset
_ ⊆ Support α h := Set.diff_subset _ _
have U_disj_supp_f : Disjoint U (Support α f) := by
by_contra h_contra
rw [Set.not_disjoint_iff] at h_contra
let ⟨x, x_in_U, x_in_supp_F⟩ := h_contra
unfold_let at x_in_U
have x_in_diff := interior_subset x_in_U
exact x_in_diff.2 x_in_supp_F
have U_nonempty : Set.Nonempty U := by
by_contra U_empty
rw [Set.not_nonempty_iff_eq_empty] at U_empty
have v_moved : h • v ≠ v := by rw [<-mem_support]; assumption
let ⟨W, ⟨W_open, v_in_W, W_subset_supp_h, W_disj_img⟩⟩ := disjoint_nbhd_in (support_open _) v_in_supp v_moved
let V := W \ {v}
have V_open : IsOpen V := W_open.sdiff isClosed_singleton
sorry
use U
-- Stuff I attempted so far:
-- let U := Support α h \ closure (Support α f)
-- have U_open : IsOpen U := by
-- apply IsOpen.sdiff
-- exact support_open h
-- simp
-- let V := U \ {v}
-- have V_open : IsOpen V := by
-- apply IsOpen.sdiff
-- · apply IsOpen.sdiff
-- exact support_open h
-- simp
-- · exact isClosed_singleton
-- have U_subset_support : U ⊆ Support α h := Set.diff_subset _ _
-- have V_subset_support : V ⊆ Support α h := by
-- -- Mathlib kind of letting me down on this one:
-- unfold_let
-- repeat rw [Set.diff_eq]
-- intro x x_in
-- exact x_in.left.left
-- have V_disj_support : Disjoint V (Support α f) := by
-- intro S
-- simp
-- intro S_subset
-- intro S_support
-- intro x x_in_S
-- have h₁ := S_subset x_in_S
-- simp at h₁
-- have h₂ := S_support x_in_S
-- simp at h₂
-- have h₃ := not_mem_of_not_mem_closure h₁.left.right
-- exact h₃ h₂
-- use V
end proposition_2_1
-- ----------------------------------------------------------------
-- section finite_exponent
-- lemma coe_nat_fin {n i : } (h : i < n) : ∃ (i' : fin n), i = i' := ⟨ ⟨ i, h ⟩, rfl ⟩
-- variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α]
-- lemma distinct_images_from_disjoint {g : G} {V : set α} {n : }
-- (n_pos : 0 < n)
-- (h_disj : ∀ (i j : fin n) (i_ne_j : i ≠ j), disjoint (g ^ (i : ) •'' V) (g ^ (j : ) •'' V)) :
-- ∀ (q : α) (hq : q ∈ V) (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ∉ V :=
-- begin
-- intros q hq i i_pos hcontra,
-- have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : fin n), { intro, done },
-- have hcontra' : g ^ (i : ) • (q : α) ∈ g ^ (i : ) •'' V, exact ⟨ q, hq, rfl ⟩,
-- have giq_notin_V := Set.disjoint_left.mp (h_disj i (⟨ 0, n_pos ⟩ : fin n) i_ne_zero) hcontra',
-- exact ((by done : g ^ 0 •'' V = V) ▸ giq_notin_V) hcontra
-- end
-- lemma moves_inj_period {g : G} {p : α} {n : } (period_eq_n : period p g = n) : function.injective (λ (i : fin n), g ^ (i : ) • p) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • p ≠ p,
-- { intros k one_le_k k_lt_n gkp_eq_p,
-- have := period_le_fix (nat.succ_le_iff.mp one_le_k) gkp_eq_p,
-- rw period_eq_n at this,
-- linarith },
-- exact moves_inj_N period_ge_n
-- end
-- lemma lemma_2_2 {α : Type u_2} [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] [t2_space α]
-- (U : set α) (U_open : is_open U) (locally_moving : is_locally_moving G α) :
-- U.nonempty → monoid.exponent (rigid_stabilizer G U) = 0 :=
-- begin
-- intro U_nonempty,
-- by_contra exp_ne_zero,
-- rcases (period_from_exponent U U_nonempty exp_ne_zero) with ⟨ p, g, n, n_pos, hpgn, n_eq_Sup ⟩,
-- rcases disjoint_nbhd_fin (moves_inj_period hpgn) with ⟨ V', V'_open, p_in_V', disj' ⟩,
-- dsimp at disj',
-- let V := U ∩ V',
-- have V_ss_U : V ⊆ U := Set.inter_subset_left U V',
-- have V'_ss_V : V ⊆ V' := Set.inter_subset_right U V',
-- have V_open : is_open V := is_open.inter U_open V'_open,
-- have p_in_V : (p : α) ∈ V := ⟨ subtype.mem p, p_in_V' ⟩,
-- have disj : ∀ (i j : fin n), ¬ i = j → disjoint (↑g ^ ↑i •'' V) (↑g ^ ↑j •'' V),
-- { intros i j i_ne_j W W_ss_giV W_ss_gjV,
-- exact disj' i j i_ne_j
-- (Set.subset.trans W_ss_giV (smul''_subset (↑g ^ ↑i) V'_ss_V))
-- (Set.subset.trans W_ss_gjV (smul''_subset (↑g ^ ↑j) V'_ss_V)) },
-- have ristV_ne_bot := locally_moving V V_open (Set.nonempty_of_mem p_in_V),
-- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨ q, q_in_V, hq_ne_q ⟩,
-- have hg_in_ristU : (h : G) * (g : G) ∈ rigid_stabilizer G U := (rigid_stabilizer G U).mul_mem' (rist_ss_rist V_ss_U h_in_ristV) (subtype.mem g),
-- have giq_notin_V : ∀ (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ∉ V := distinct_images_from_disjoint n_pos disj q q_in_V,
-- have giq_ne_q : ∀ (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ≠ (q : α),
-- { intros i i_pos giq_eq_q, exact (giq_eq_q ▸ (giq_notin_V i i_pos)) q_in_V, },
-- have q_in_U : q ∈ U, { have : q ∈ U ∩ V' := q_in_V, exact this.1 },
-- -- We have (hg)^i q = g^i q for all 0 < i < n
-- have pow_hgq_eq_pow_gq : ∀ (i : fin n), (i : ) < n → (h * g) ^ (i : ) • q = (g : G) ^ (i : ) • q,
-- { intros i, induction (i : ) with i',
-- { intro, repeat {rw pow_zero} },
-- { intro succ_i'_lt_n,
-- rw [smul_succ, ih (nat.lt_of_succ_lt succ_i'_lt_n), smul_smul, mul_assoc, ← smul_smul, ← smul_smul, ← smul_succ],
-- have image_q_notin_V : g ^ i'.succ • q ∉ V,
-- { have i'succ_ne_zero := ne_zero.pos i'.succ,
-- exact giq_notin_V (⟨ i'.succ, succ_i'_lt_n ⟩ : fin n) i'succ_ne_zero },
-- exact by_contradiction (λ c, c (by_contradiction (λ c', image_q_notin_V ((rist_supported_in_set h_in_ristV) c')))) } },
-- -- Combined with g^i q ≠ q, this yields (hg)^i q ≠ q for all 0 < i < n
-- have hgiq_ne_q : ∀ (i : fin n), (i : ) > 0 → (h * g) ^ (i : ) • q ≠ q,
-- { intros i i_pos, rw pow_hgq_eq_pow_gq i (fin.is_lt i), by_contra c, exact (giq_notin_V i i_pos) (c.symm ▸ q_in_V) },
-- -- This even holds for i = n
-- have hgnq_ne_q : (h * g) ^ n • q ≠ q,
-- { -- Rewrite (hg)^n q = hg^n q
-- have npred_lt_n : n.pred < n, exact (nat.succ_pred_eq_of_pos n_pos) ▸ (lt_add_one n.pred),
-- rcases coe_nat_fin npred_lt_n with ⟨ i', i'_eq_pred_n ⟩,
-- have hgi'q_eq_gi'q := pow_hgq_eq_pow_gq i' (i'_eq_pred_n ▸ npred_lt_n),
-- have : n = (i' : ).succ := i'_eq_pred_n ▸ (nat.succ_pred_eq_of_pos n_pos).symm,
-- rw [this, smul_succ, hgi'q_eq_gi'q, ← smul_smul, ← smul_succ, ← this],
-- -- Now it follows from g^n q = q and h q ≠ q
-- have n_le_period_qg := notfix_le_period' n_pos ((zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g)).1 giq_ne_q,
-- have period_qg_le_n := (zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g).2, rw ← n_eq_Sup at period_qg_le_n,
-- exact (ge_antisymm period_qg_le_n n_le_period_qg).symm ▸ ((pow_period_fix q (g : G)).symm ▸ hq_ne_q) },
-- -- Finally, we derive a contradiction
-- have period_pos_le_n := zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) (⟨ h * g, hg_in_ristU ⟩ : rigid_stabilizer G U),
-- rw ← n_eq_Sup at period_pos_le_n,
-- cases (lt_or_eq_of_le period_pos_le_n.2),
-- { exact (hgiq_ne_q (⟨ (period (q : α) ((h : G) * (g : G))), h_1 ⟩ : fin n) period_pos_le_n.1) (pow_period_fix (q : α) ((h : G) * (g : G))) },
-- { exact hgnq_ne_q (h_1 ▸ (pow_period_fix (q : α) ((h : G) * (g : G)))) }
-- end
-- lemma proposition_2_1 [t2_space α] (f : G) : is_locally_moving G α → (algebraic_centralizer f).centralizer = rigid_stabilizer G (regular_support α f) := sorry
-- end finite_exponent
lemma nontrivial_pow_from_exponent_eq_zero {G : Type _} [Group G]
(exp_eq_zero : Monoid.exponent G = 0) :
∀ (n : ), n > 0 → ∃ g : G, g^n ≠ 1 :=
by
intro n n_pos
rw [Monoid.exponent_eq_zero_iff] at exp_eq_zero
unfold Monoid.ExponentExists at exp_eq_zero
rw [<-Classical.not_forall_not, Classical.not_not] at exp_eq_zero
simp at exp_eq_zero
exact exp_eq_zero n n_pos
lemma Commute.inv {G : Type _} [Group G] {f g : G} : Commute f g → Commute f g⁻¹ := by
unfold Commute SemiconjBy
intro h
have h₁ : f = g * f * g⁻¹ := by
nth_rw 1 [<-mul_one f]
rw [<-mul_right_inv g, <-mul_assoc]
rw [h]
nth_rw 2 [h₁]
group
lemma Commute.inv_iff {G : Type _} [Group G] {f g : G} : Commute f g ↔ Commute f g⁻¹ := ⟨
Commute.inv,
by
nth_rw 2 [<-inv_inv g]
apply Commute.inv
lemma Commute.inv_iff₂ {G : Type _} [Group G] {f g : G} : Commute f g ↔ Commute f⁻¹ g := ⟨
Commute.symm ∘ Commute.inv_iff.mp ∘ Commute.symm,
Commute.symm ∘ Commute.inv_iff.mpr ∘ Commute.symm
lemma Commute.into {G : Type _} [Group G] {f g : G} : Commute f g → f * g = g * f := by
unfold Commute SemiconjBy
tauto
lemma proposition_2_1 {G α : Type _}
[Group G] [TopologicalSpace α] [ContinuousMulAction G α] [T2Space α]
[LocallyMoving G α] [h_faithful : FaithfulSMul G α]
(f : G) :
Set.centralizer (AlgebraicSubgroup f) = RigidStabilizer G (RegularSupport α f) :=
by
apply Set.eq_of_subset_of_subset
swap
{
intro h h_in_rist
simp at h_in_rist
let U := RegularSupport α f
rw [Set.mem_centralizer_iff]
intro g g_in_S
simp [AlgebraicSubgroup] at g_in_S
let ⟨g', ⟨g'_alg_disj, g_eq_g'⟩⟩ := g_in_S
have supp_disj := proposition_1_1_2 f g' g'_alg_disj (α := α)
have supp_αf_open : IsOpen (Support α f) := support_open f
have supp_αg_open : IsOpen (Support α g) := support_open g
have rsupp_disj : Disjoint (RegularSupport α f) (Support α g) := by
have cl_supp_disj : Disjoint (closure (Support α f)) (Support α g)
{
rw [<-g_eq_g']
apply Set.disjoint_of_subset_left _ supp_disj
show closure (Support α f) ⊆ Support α f
-- TODO: figure out how to prove this
sorry
}
apply Set.disjoint_of_subset _ _ cl_supp_disj
· rw [RegularSupport.def]
exact interior_subset
· rfl
apply Commute.eq
symm
apply commute_if_rigidStabilizer_and_disjoint (α := α)
· exact h_in_rist
· exact rsupp_disj
}
intro h h_in_centralizer
by_contra h_notin_rist
simp at h_notin_rist
rw [rigidStabilizer_support] at h_notin_rist
let ⟨V, V_in_supp_h, V_nonempty, V_open, V_disj_supp_f⟩ := open_disj_of_not_support_subset_rsupp h_notin_rist
let ⟨v, v_in_V⟩ := V_nonempty
have v_moved := V_in_supp_h v_in_V
rw [mem_support] at v_moved
have ⟨W, W_open, v_in_W, W_subset_support, disj_W_img⟩ := disjoint_nbhd_in V_open v_in_V v_moved
have mono_exp := lemma_2_2 G W_open (Set.nonempty_of_mem v_in_W)
let ⟨⟨g, g_in_rist⟩, g12_ne_one⟩ := nontrivial_pow_from_exponent_eq_zero mono_exp 12 (by norm_num)
simp at g12_ne_one
have disj_supports : Disjoint (Support α f) (Support α g) := by
apply Set.disjoint_of_subset_right
· apply rigidStabilizer_support.mp
exact g_in_rist
· apply Set.disjoint_of_subset_right
· exact W_subset_support
· exact V_disj_supp_f.symm
have alg_disj_f_g := proposition_1_1_1 _ _ disj_supports
have g12_in_algebraic_subgroup : g^12 ∈ AlgebraicSubgroup f := by
simp [AlgebraicSubgroup]
use g
constructor
exact ↑alg_disj_f_g
rfl
have h_nc_g12 : ¬Commute (g^12) h := by
have supp_g12_sub_W : Support α (g^12) ⊆ W := by
rw [rigidStabilizer_support] at g_in_rist
calc
Support α (g^12) ⊆ Support α g := by apply support_pow
_ ⊆ W := g_in_rist
have supp_g12_disj_hW : Disjoint (Support α (g^12)) (h •'' W) := by
apply Set.disjoint_of_subset_left
swap
· exact disj_W_img
· exact supp_g12_sub_W
exact not_commute_of_disj_support_smulImage
g12_ne_one
supp_g12_sub_W
supp_g12_disj_hW
apply h_nc_g12
exact h_in_centralizer _ g12_in_algebraic_subgroup
end proposition_2_1
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
end Rubin

@ -11,6 +11,7 @@ import Rubin.RigidStabilizer
import Rubin.SmulImage
import Rubin.Topological
import Rubin.FaithfulAction
import Rubin.Period
namespace Rubin
@ -89,8 +90,39 @@ fun (h : G) (nc : ¬Commute f h) => {
}
-- This is an idea of having a Prop version of AlgebraicallyDisjoint, but it sounds painful to work with
-- def IsAlgebraicallyDisjoint {G : Type _} [Group G] (f g : G): Prop :=
-- ∀ (h : G), ¬Commute f h → ∃ (f₁ f₂ : G), ∃ (elem : AlgebraicallyDisjointElem f g h), elem.fst = f₁ ∧ elem.snd = f₂
def IsAlgebraicallyDisjoint {G : Type _} [Group G] (f g : G): Prop :=
∀ (h : G), ¬Commute f h → ∃ (f₁ f₂ : G), ∃ (elem : AlgebraicallyDisjointElem f g h), elem.fst = f₁ ∧ elem.snd = f₂
namespace IsAlgebraicallyDisjoint
variable {G : Type _} [Group G]
variable {f g: G}
noncomputable def elim
(is_alg_disj: IsAlgebraicallyDisjoint f g) :
AlgebraicallyDisjoint f g :=
fun h nc => (is_alg_disj h nc).choose_spec.choose_spec.choose
def mk (alg_disj : AlgebraicallyDisjoint f g) : IsAlgebraicallyDisjoint f g :=
fun h nc =>
let elem := alg_disj h nc
elem.fst,
elem.snd,
elem,
rfl,
rfl
noncomputable instance coeFnAlgebraicallyDisjoint : CoeFun
(IsAlgebraicallyDisjoint f g)
(fun _ => AlgebraicallyDisjoint f g) where
coe := elim
instance coeAlgebraicallyDisjoint : Coe (AlgebraicallyDisjoint f g) (IsAlgebraicallyDisjoint f g) where
coe := mk
end IsAlgebraicallyDisjoint
@[simp]
theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
@ -456,6 +488,25 @@ instance {g : G} {x : α} {n : } :
where
coe := period_ge_n_cast
-- TODO: remove the unneeded `n` parameter
theorem smul_injective_within_period {g : G} {p : α} {n : }
(period_eq_n : Period.period p g = n) :
Function.Injective (fun (i : Fin n) => g ^ (i : ) • p) :=
by
have zpow_fix : (fun (i : Fin n) => g ^ (i : ) • p) = (fun (i : Fin n) => g ^ (i : ) • p) := by
ext x
simp
rw [zpow_fix]
apply moves_inj
intro k one_le_k k_lt_n
apply Period.moves_within_period'
exact one_le_k
rw [period_eq_n]
exact k_lt_n
#align moves_inj_period Rubin.smul_injective_within_period
-- TODO: move to Rubin.lean
lemma moves_1234_of_moves_12 {g : G} {x : α} (g12_moves : g^12 • x ≠ x) :
Function.Injective (fun i : Fin 5 => g^(i : ) • x) :=
by

@ -43,4 +43,32 @@ def is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α]
∀ g : G, ∀ x : α, f (g • x) = g • f x
#align is_equivariant Rubin.is_equivariant
lemma disjoint_not_mem {α : Type _} {U V : Set α} (disj: Disjoint U V) :
∀ {x : α}, x ∈ U → x ∉ V :=
by
intro x x_in_U x_in_V
apply disj <;> try simp
· exact Set.singleton_subset_iff.mpr x_in_U
· rw [Set.singleton_subset_iff]
exact x_in_V
· rfl
lemma disjoint_not_mem₂ {α : Type _} {U V : Set α} (disj: Disjoint U V) :
∀ {x : α}, x ∈ V → x ∉ U := disjoint_not_mem disj.symm
lemma fixes_inv {G α : Type _} [Group G] [MulAction G α] {g : G} {x : α}:
g • x = x ↔ g⁻¹ • x = x :=
by
constructor
{
intro h
nth_rw 1 [<-h]
rw [<-mul_smul, mul_left_inv, one_smul]
}
{
intro h
nth_rw 1 [<-h]
rw [<-mul_smul, mul_right_inv, one_smul]
}
end Rubin

@ -10,6 +10,7 @@ variable {G a : Type _}
variable [Group G]
variable [MulAction G α]
-- TODO: move to Rubin.Period
noncomputable def period (p : α) (g : G) : :=
sInf {n : | n > 0 ∧ g ^ n • p = p}
#align period Rubin.Period.period
@ -34,7 +35,7 @@ theorem notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0)
#align notfix_le_period Rubin.Period.notfix_le_period
theorem notfix_le_period' {p : α} {g : G} {n : } (n_pos : n > 0)
(period_pos : Rubin.Period.period p g > 0)
(period_pos : 0 < Rubin.Period.period p g)
(pmoves : ∀ i : Fin n, 0 < (i : ) → g ^ (i : ) • p ≠ p) : n ≤ Rubin.Period.period p g :=
Rubin.Period.notfix_le_period n_pos period_pos fun (i : ) (i_pos : 0 < i) (i_lt_n : i < n) =>
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
@ -49,6 +50,33 @@ theorem period_neutral_eq_one (p : α) : Rubin.Period.period p (1 : G) = 1 :=
linarith
#align period_neutral_eq_one Rubin.Period.period_neutral_eq_one
theorem moves_within_period {n : } (g : G) (x : α) :
0 < n → n < period x g → g^n • x ≠ x :=
by
intro n_pos n_lt_period
unfold period at n_lt_period
apply Nat.not_mem_of_lt_sInf at n_lt_period
simp at n_lt_period
apply n_lt_period
exact n_pos
-- Variant of moves_within_period, which works with integers
theorem moves_within_period' {z : } (g : G) (x : α) :
0 < z → z < period x g → g^z • x ≠ x :=
by
intro n_pos n_lt_period
rw [<-Int.ofNat_natAbs_eq_of_nonneg _ (Int.le_of_lt n_pos)]
rw [zpow_ofNat]
apply moves_within_period
· rw [<-Int.natAbs_zero]
apply Int.natAbs_lt_natAbs_of_nonneg_of_lt
rfl
assumption
· rw [<-Int.natAbs_cast (period x g)]
apply Int.natAbs_lt_natAbs_of_nonneg_of_lt
exact Int.le_of_lt n_pos
assumption
def periods (U : Set α) (H : Subgroup G) : Set :=
{n : | ∃ (p : α) (g : H), p ∈ U ∧ Rubin.Period.period (p : α) (g : G) = n}
#align periods Rubin.Period.periods
@ -59,7 +87,7 @@ theorem periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {H : Subgroup
(Rubin.Period.periods U H).Nonempty ∧
BddAbove (Rubin.Period.periods U H) ∧
∃ (m : ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p :=
by
by
rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩
have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by
intro p g; rw [gm_eq_one g];
@ -84,7 +112,7 @@ theorem period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgrou
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∃ (p : α) (g : H) (n : ),
p ∈ U ∧ n > 0 ∧ Rubin.Period.period (p : α) (g : G) = n ∧ n = sSup (Rubin.Period.periods U H) :=
by
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
rcases Nat.sSup_mem periods_nonempty periods_bounded with ⟨p, g, hperiod⟩
@ -105,7 +133,7 @@ theorem zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
∀ (p : U) (g : H),
0 < Rubin.Period.period (p : α) (g : G) ∧
Rubin.Period.period (p : α) (g : G) ≤ sSup (Rubin.Period.periods U H) :=
by
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
intro p g
@ -117,8 +145,30 @@ theorem zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
le_csSup periods_bounded period_in_periods⟩
#align zero_lt_period_le_Sup_periods Rubin.Period.zero_lt_period_le_Sup_periods
theorem pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p :=
by
theorem period_pos {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : U) (g : H), 0 < Rubin.Period.period (p : α) (g : G) :=
fun p g =>
(zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero p g).1
theorem period_pos' {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : α) (g : G), p ∈ U → g ∈ H → 0 < Rubin.Period.period (p : α) (g : G) :=
fun p g p_in_U g_in_H => period_pos U_nonempty exp_ne_zero ⟨p, p_in_U⟩ ⟨g, g_in_H⟩
theorem period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
{H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : U) (g : H), Rubin.Period.period (p : α) (g : G) ≤ sSup (Rubin.Period.periods U H) :=
fun p g =>
(zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero p g).2
theorem period_le_Sup_periods' {U : Set α} (U_nonempty : U.Nonempty)
{H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : α) (g : G), p ∈ U → g ∈ H → Rubin.Period.period p g ≤ sSup (Rubin.Period.periods U H) :=
fun p g p_in_U g_in_H => period_le_Sup_periods U_nonempty exp_ne_zero ⟨p, p_in_U⟩ ⟨g, g_in_H⟩
-- TODO: rename to pow_period_fixes
theorem pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p := by
cases eq_zero_or_neZero (Rubin.Period.period p g) with
| inl h => rw [h]; simp
| inr h =>

@ -104,7 +104,6 @@ def RegularSupport (g: G) : Set α :=
InteriorClosure (Support α g)
#align regular_support Rubin.RegularSupport
@[simp]
theorem RegularSupport.def {G : Type _} (α : Type _)
[Group G] [MulAction G α] [TopologicalSpace α]
(g: G) : RegularSupport α g = interior (closure (Support α g)) :=

@ -2,6 +2,7 @@ import Mathlib.Data.Finset.Basic
import Mathlib.GroupTheory.GroupAction.Basic
import Rubin.Support
import Rubin.MulActionExt
namespace Rubin
@ -59,4 +60,62 @@ by
simp
exact h
theorem commute_if_rigidStabilizer_and_disjoint {g h : G} {U : Set α} [FaithfulSMul G α] :
g ∈ RigidStabilizer G U → Disjoint U (Support α h) → Commute g h :=
by
intro g_in_rist U_disj
unfold Commute
unfold SemiconjBy
apply eq_of_smul_eq_smul (α := α)
intro x
by_cases x_in_U?: x ∈ U
{
rw [rigidStabilizer_support] at g_in_rist
have x_notin_support : x ∉ Support α h := disjoint_not_mem U_disj x_in_U?
rw [mul_smul]
rw [not_mem_support.mp x_notin_support]
rw [mul_smul]
by_cases gx_in_U?: g • x ∈ U
{
symm
apply not_mem_support.mp
apply disjoint_not_mem U_disj
exact gx_in_U?
}
{
have gx_notin_support : g • x ∉ Support α g := by
intro h
exact gx_in_U? (g_in_rist h)
rw [<-support_inv] at gx_notin_support
rw [not_mem_support] at gx_notin_support
simp at gx_notin_support
symm at gx_notin_support
rw [fixes_inv] at gx_notin_support
rw [<-gx_notin_support]
group_action
rw [not_mem_support.mp x_notin_support]
}
}
{
have x_fixed : g • x = x := g_in_rist _ x_in_U?
repeat rw [mul_smul]
rw [x_fixed]
by_cases hx_in_U?: h • x ∈ U
{
have hx_notin_support := disjoint_not_mem U_disj hx_in_U?
rw [<-support_inv] at hx_notin_support
rw [not_mem_support] at hx_notin_support
group_action at hx_notin_support
rw [<-hx_notin_support]
exact x_fixed
}
{
rw [g_in_rist _ hx_in_U?]
}
}
end Rubin

@ -61,6 +61,11 @@ theorem mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹ •'' U
exact msi
#align mem_inv_smul'' Rubin.mem_inv_smulImage
theorem mem_smulImage' {x : α} (g : G) {U : Set α} : x ∈ U ↔ g • x ∈ g •'' U :=
by
rw [mem_smulImage]
rw [<-mul_smul, mul_left_inv, one_smul]
-- TODO: rename to smulImage_mul
@[simp]
theorem mul_smulImage (g h : G) (U : Set α) : g •'' (h •'' U) = (g * h) •'' U :=
@ -193,4 +198,24 @@ theorem smulImage_disjoint_subset {G α : Type _} [Group G] [MulAction G α]
by
apply Set.disjoint_of_subset (smulImage_subset _ h_sub) (smulImage_subset _ h_sub)
-- States that if `g^i •'' V` and `g^j •'' V` are disjoint for any `i ≠ j` and `x ∈ V`
-- then `g^i • x` will always lie outside of `V`.
lemma smulImage_distinct_of_disjoint_exp {G α : Type _} [Group G] [MulAction G α] {g : G} {V : Set α} {n : }
(n_pos : 0 < n)
(h_disj : ∀ (i j : Fin n), i ≠ j → Disjoint (g ^ (i : ) •'' V) (g ^ (j : ) •'' V)) :
∀ (x : α) (_hx : x ∈ V) (i : Fin n), 0 < (i : ) → g ^ (i : ) • (x : α) ∉ V :=
by
intro x hx i i_pos
have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : Fin n) := by
intro h
rw [h] at i_pos
simp at i_pos
have h_contra : g ^ (i : ) • (x : α) ∈ g ^ (i : ) •'' V := by use x
have h_notin_V := Set.disjoint_left.mp (h_disj i (⟨0, n_pos⟩ : Fin n) i_ne_zero) h_contra
simp only [pow_zero, one_smulImage] at h_notin_V
exact h_notin_V
#align distinct_images_from_disjoint Rubin.smulImage_distinct_of_disjoint_exp
end Rubin

@ -170,5 +170,63 @@ theorem disjoint_support_comm (f g : G) {U : Set α} :
group_action
#align disjoint_support_comm Rubin.disjoint_support_comm
lemma empty_of_subset_disjoint {α : Type _} {U V : Set α} :
Disjoint U V → U ⊆ V → U = ∅ :=
by
intro disj subset
apply Set.eq_of_subset_of_subset <;> try simp
intro x x_in_U
simp
apply disjoint_not_mem disj
exact x_in_U
exact subset x_in_U
theorem not_commute_of_disj_support_smulImage {G α : Type _}
[Group G] [MulAction G α] [FaithfulSMul G α]
{f g : G} {U : Set α} (f_ne_one : f ≠ 1)
(subset : Support α f ⊆ U)
(disj : Disjoint (Support α f) (g •'' U)) :
¬Commute f g :=
by
intro h_comm
have h₀ : ∀ x ∈ U, x ∉ Support α f := by
intro x x_in_U
unfold Commute SemiconjBy at h_comm
have gx_in_img := (mem_smulImage' g).mp x_in_U
have h₁ : g • f • x = g • x := by
have res := disjoint_not_mem₂ disj gx_in_img
rw [not_mem_support] at res
rw [<-mul_smul] at res
rw [h_comm] at res
rw [mul_smul] at res
exact res
have h₂ : f • x = x := by
rw [<-one_smul G (f • x)]
nth_rw 2 [<-one_smul G x]
rw [<-mul_left_inv g]
rw [mul_smul]
rw [mul_smul]
nth_rw 1 [h₁]
rw [<-not_mem_support] at h₂
exact h₂
have h₀' : Disjoint (Support α f) U := by
intro T; simp
intro T_ss_supp T_ss_U
intro x x_in_T
apply h₀
exact T_ss_U x_in_T
exact T_ss_supp x_in_T
have support_empty : Support α f = ∅ := empty_of_subset_disjoint h₀' subset
apply f_ne_one
apply smul_left_injective' (α := α)
ext x
simp
by_contra h
rw [<-ne_eq, <-mem_support] at h
apply Set.eq_empty_iff_forall_not_mem.mp support_empty
exact h
end Rubin

Loading…
Cancel
Save