|
|
|
#![feature(generic_arg_infer)]
|
|
|
|
|
|
|
|
use neuramethyst::algebra::NeuraVector;
|
|
|
|
use neuramethyst::derivable::activation::Relu;
|
|
|
|
use neuramethyst::derivable::loss::Euclidean;
|
|
|
|
use neuramethyst::{cycle_shuffling, prelude::*};
|
|
|
|
|
|
|
|
fn main() {
|
|
|
|
let mut network = neura_sequential![
|
|
|
|
neura_layer!("dense", 2, 4; Relu),
|
|
|
|
neura_layer!("dense", 3; Relu),
|
|
|
|
neura_layer!("dense", 1; Relu)
|
|
|
|
];
|
|
|
|
|
|
|
|
let inputs: [(NeuraVector<2, f64>, NeuraVector<1, f64>); 4] = [
|
|
|
|
([0.0, 0.0].into(), [0.0].into()),
|
|
|
|
([0.0, 1.0].into(), [1.0].into()),
|
|
|
|
([1.0, 0.0].into(), [1.0].into()),
|
|
|
|
([1.0, 1.0].into(), [0.0].into()),
|
|
|
|
];
|
|
|
|
|
|
|
|
for (input, target) in &inputs {
|
|
|
|
println!(
|
|
|
|
"Input: {:?}, target: {}, actual: {:.3}",
|
|
|
|
&input,
|
|
|
|
target[0],
|
|
|
|
network.eval(&input)[0]
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut trainer = NeuraBatchedTrainer::new(0.05, 1000);
|
|
|
|
trainer.batch_size = 6;
|
|
|
|
trainer.log_iterations = 250;
|
|
|
|
trainer.learning_momentum = 0.01;
|
|
|
|
|
|
|
|
trainer.train(
|
|
|
|
NeuraBackprop::new(Euclidean),
|
|
|
|
&mut network,
|
|
|
|
cycle_shuffling(inputs.iter().cloned(), rand::thread_rng()),
|
|
|
|
&inputs,
|
|
|
|
);
|
|
|
|
|
|
|
|
for (input, target) in inputs {
|
|
|
|
println!(
|
|
|
|
"Input: {:?}, target: {}, actual: {:.3}",
|
|
|
|
&input,
|
|
|
|
target[0],
|
|
|
|
network.eval(&input)[0]
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|