|
|
|
@ -89,9 +89,9 @@ impl<F: Float + Scalar + NumAssignOps> NeuraTrainableLayerSelf<DVector<F>> for N
|
|
|
|
|
|
|
|
|
|
fn get_gradient(
|
|
|
|
|
&self,
|
|
|
|
|
input: &DVector<F>,
|
|
|
|
|
intermediary: &Self::IntermediaryRepr,
|
|
|
|
|
epsilon: &Self::Output,
|
|
|
|
|
_input: &DVector<F>,
|
|
|
|
|
_intermediary: &Self::IntermediaryRepr,
|
|
|
|
|
_epsilon: &Self::Output,
|
|
|
|
|
) -> Self::Gradient {
|
|
|
|
|
()
|
|
|
|
|
}
|
|
|
|
@ -102,7 +102,7 @@ impl<F: Float + Scalar + NumAssignOps> NeuraTrainableLayerBackprop<DVector<F>>
|
|
|
|
|
{
|
|
|
|
|
fn backprop_layer(
|
|
|
|
|
&self,
|
|
|
|
|
input: &DVector<F>,
|
|
|
|
|
_input: &DVector<F>,
|
|
|
|
|
(jacobian_partial, stddev): &Self::IntermediaryRepr,
|
|
|
|
|
epsilon: &Self::Output,
|
|
|
|
|
) -> DVector<F> {
|
|
|
|
|