|
|
@ -1,7 +1,12 @@
|
|
|
|
use nalgebra::{DVector, Scalar};
|
|
|
|
use nalgebra::{DVector, Scalar};
|
|
|
|
use num::{traits::NumAssignOps, Float, ToPrimitive};
|
|
|
|
use num::{traits::NumAssignOps, Float, ToPrimitive};
|
|
|
|
|
|
|
|
|
|
|
|
use crate::{derivable::NeuraDerivable, layer::NeuraTrainableLayerSelf};
|
|
|
|
use crate::{
|
|
|
|
|
|
|
|
derivable::NeuraDerivable,
|
|
|
|
|
|
|
|
layer::NeuraTrainableLayerSelf,
|
|
|
|
|
|
|
|
network::{NeuraNetwork, NeuraNetworkRec},
|
|
|
|
|
|
|
|
prelude::NeuraLayer,
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
use super::*;
|
|
|
|
use super::*;
|
|
|
|
|
|
|
|
|
|
|
@ -20,21 +25,58 @@ impl<Act: Clone + NeuraDerivable<f64>> NeuraForwardForward<Act> {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait ForwardForwardDerivate<Data> {
|
|
|
|
|
|
|
|
fn derivate_goodness(&self, data: &Data) -> Data;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
impl<F: Float + Scalar + NumAssignOps, Act: NeuraDerivable<F>> ForwardForwardDerivate<DVector<F>>
|
|
|
|
|
|
|
|
for NeuraForwardPair<Act>
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
fn derivate_goodness(&self, data: &DVector<F>) -> DVector<F> {
|
|
|
|
|
|
|
|
let goodness = data
|
|
|
|
|
|
|
|
.iter()
|
|
|
|
|
|
|
|
.copied()
|
|
|
|
|
|
|
|
.reduce(|acc, x| acc + x * x)
|
|
|
|
|
|
|
|
.unwrap_or(F::zero());
|
|
|
|
|
|
|
|
let goodness = if self.maximize {
|
|
|
|
|
|
|
|
goodness - F::from(self.threshold).unwrap()
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
F::from(self.threshold).unwrap() - goodness
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
// We skip self.activation.eval(goodness)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let two = F::from(2.0).unwrap();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// The original formula does not have a 1/2 term,
|
|
|
|
|
|
|
|
// so we must multiply by 2
|
|
|
|
|
|
|
|
let mut goodness_derivative = data * (two * self.activation.derivate(goodness));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.maximize {
|
|
|
|
|
|
|
|
goodness_derivative = -goodness_derivative;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
goodness_derivative
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
struct NeuraForwardPair<Act> {
|
|
|
|
struct NeuraForwardPair<Act> {
|
|
|
|
threshold: f64,
|
|
|
|
threshold: f64,
|
|
|
|
maximize: bool,
|
|
|
|
maximize: bool,
|
|
|
|
activation: Act,
|
|
|
|
activation: Act,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
impl<
|
|
|
|
impl<F, Act: Clone + NeuraDerivable<f64>, Input: Clone, Trainable: NeuraTrainableLayerBase>
|
|
|
|
F,
|
|
|
|
NeuraGradientSolver<Input, bool, Trainable> for NeuraForwardForward<Act>
|
|
|
|
Act: Clone + NeuraDerivable<f64>,
|
|
|
|
|
|
|
|
Input,
|
|
|
|
|
|
|
|
Trainable: NeuraTrainableLayerBase,
|
|
|
|
|
|
|
|
> NeuraGradientSolver<Input, bool, Trainable> for NeuraForwardForward<Act>
|
|
|
|
|
|
|
|
where
|
|
|
|
where
|
|
|
|
F: ToPrimitive,
|
|
|
|
F: ToPrimitive,
|
|
|
|
Trainable: NeuraOldTrainableNetwork<Input, NeuraForwardPair<Act>, Output = DVector<F>, Gradient = <Trainable as NeuraTrainableLayerBase>::Gradient>
|
|
|
|
Trainable: NeuraOldTrainableNetwork<
|
|
|
|
|
|
|
|
Input,
|
|
|
|
|
|
|
|
NeuraForwardPair<Act>,
|
|
|
|
|
|
|
|
Output = DVector<F>,
|
|
|
|
|
|
|
|
Gradient = <Trainable as NeuraTrainableLayerBase>::Gradient,
|
|
|
|
|
|
|
|
>,
|
|
|
|
|
|
|
|
NeuraForwardPair<Act>:
|
|
|
|
|
|
|
|
ForwardForwardRecurse<Input, Trainable, <Trainable as NeuraTrainableLayerBase>::Gradient>,
|
|
|
|
{
|
|
|
|
{
|
|
|
|
fn get_gradient(
|
|
|
|
fn get_gradient(
|
|
|
|
&self,
|
|
|
|
&self,
|
|
|
@ -43,15 +85,18 @@ where
|
|
|
|
target: &bool,
|
|
|
|
target: &bool,
|
|
|
|
) -> <Trainable as NeuraTrainableLayerBase>::Gradient {
|
|
|
|
) -> <Trainable as NeuraTrainableLayerBase>::Gradient {
|
|
|
|
let target = *target;
|
|
|
|
let target = *target;
|
|
|
|
|
|
|
|
let pair = NeuraForwardPair {
|
|
|
|
trainable.traverse(
|
|
|
|
|
|
|
|
input,
|
|
|
|
|
|
|
|
&NeuraForwardPair {
|
|
|
|
|
|
|
|
threshold: self.threshold,
|
|
|
|
threshold: self.threshold,
|
|
|
|
maximize: target,
|
|
|
|
maximize: target,
|
|
|
|
activation: self.activation.clone(),
|
|
|
|
activation: self.activation.clone(),
|
|
|
|
},
|
|
|
|
};
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
// trainable.traverse(
|
|
|
|
|
|
|
|
// input,
|
|
|
|
|
|
|
|
// &pair,
|
|
|
|
|
|
|
|
// )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pair.recurse(trainable, input)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
fn score(&self, trainable: &Trainable, input: &Input, target: &bool) -> f64 {
|
|
|
|
fn score(&self, trainable: &Trainable, input: &Input, target: &bool) -> f64 {
|
|
|
@ -145,6 +190,43 @@ impl<
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait ForwardForwardRecurse<Input, Network, Gradient> {
|
|
|
|
|
|
|
|
fn recurse(&self, network: &Network, input: &Input) -> Gradient;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
impl<Act, Input> ForwardForwardRecurse<Input, (), ()> for NeuraForwardPair<Act> {
|
|
|
|
|
|
|
|
#[inline(always)]
|
|
|
|
|
|
|
|
fn recurse(&self, _network: &(), _input: &Input) -> () {
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
impl<Act, Input: Clone, Network: NeuraNetwork<Input> + NeuraNetworkRec>
|
|
|
|
|
|
|
|
ForwardForwardRecurse<Input, Network, Network::Gradient> for NeuraForwardPair<Act>
|
|
|
|
|
|
|
|
where
|
|
|
|
|
|
|
|
Network::Layer: NeuraTrainableLayerSelf<Network::LayerInput>,
|
|
|
|
|
|
|
|
<Network::Layer as NeuraLayer<Network::LayerInput>>::Output: Clone,
|
|
|
|
|
|
|
|
Self: ForwardForwardDerivate<<Network::Layer as NeuraLayer<Network::LayerInput>>::Output>,
|
|
|
|
|
|
|
|
Self: ForwardForwardRecurse<
|
|
|
|
|
|
|
|
Network::NodeOutput,
|
|
|
|
|
|
|
|
Network::NextNode,
|
|
|
|
|
|
|
|
<Network::NextNode as NeuraTrainableLayerBase>::Gradient,
|
|
|
|
|
|
|
|
>,
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
fn recurse(&self, network: &Network, input: &Input) -> Network::Gradient {
|
|
|
|
|
|
|
|
let layer = network.get_layer();
|
|
|
|
|
|
|
|
let layer_input = network.map_input(input);
|
|
|
|
|
|
|
|
let (layer_output, layer_intermediary) = layer.eval_training(&layer_input);
|
|
|
|
|
|
|
|
let output = network.map_output(input, &layer_output);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let derivative = self.derivate_goodness(&layer_output);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let layer_gradient = layer.get_gradient(&layer_input, &layer_intermediary, &derivative);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
network.merge_gradient(self.recurse(network.get_next(), &output), layer_gradient)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
#[cfg(test)]
|
|
|
|
mod test {
|
|
|
|
mod test {
|
|
|
|
use rand::Rng;
|
|
|
|
use rand::Rng;
|
|
|
|