You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin.lean

1151 lines
56 KiB

/-
Copyright (c) 2023 Laurent Bartholdi. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Laurent Bartholdi
-/
-- import Mathbin.Tactic.Default
import Mathlib.Data.Finset.Basic
import Mathlib.Data.Finset.Card
import Mathlib.Data.Fintype.Perm
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.Commutator
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.GroupTheory.Exponent
import Mathlib.GroupTheory.Perm.Basic
import Mathlib.Topology.Basic
import Mathlib.Topology.Compactness.Compact
import Mathlib.Topology.Separation
import Mathlib.Topology.Homeomorph
#align_import rubin
--@[simp]
theorem Rubin.GroupActionExt.smul_smul' {G α : Type _} [Group G] [MulAction G α] {g h : G} {x : α} :
g • h • x = (g * h) • x :=
(hMul_smul g h x).symm
#align smul_smul' Rubin.GroupActionExt.smul_smul'
--@[simp]
theorem Rubin.GroupActionExt.smul_eq_smul_inv {G α : Type _} [Group G] [MulAction G α] {g h : G}
{x y : α} : g • x = h • y ↔ (h⁻¹ * g) • x = y :=
by
constructor
· intro hyp
let this.1 := congr_arg ((· • ·) h⁻¹) hyp
rw [← mul_smul, ← mul_smul, mul_left_inv, one_smul] at this
exact this
· intro hyp
let this.1 := congr_arg ((· • ·) h) hyp
rw [← mul_smul, ← mul_assoc, mul_right_inv, one_mul] at this
exact this
#align smul_eq_smul Rubin.GroupActionExt.smul_eq_smul_inv
theorem Rubin.GroupActionExt.smul_succ {G α : Type _} (n : ) [Group G] [MulAction G α] {g : G}
{x : α} : g ^ n.succ • x = g • g ^ n • x :=
by
have := Tactic.Ring.pow_add_rev g 1 n
rw [pow_one, ← Nat.succ_eq_one_add] at this
rw [← this, smul_smul]
#align smul_succ Rubin.GroupActionExt.smul_succ
section GroupActionTactic
namespace Tactic.Interactive
/- ./././Mathport/Syntax/Translate/Tactic/Mathlib/Core.lean:38:34: unsupported: setup_tactic_parser -/
open Tactic
/- ./././Mathport/Syntax/Translate/Tactic/Mathlib/Core.lean:38:34: unsupported: setup_tactic_parser -/
open Tactic.SimpArgType Interactive Tactic.Group
/-- Auxiliary tactic for the `group_action` tactic. Calls the simplifier only. -/
unsafe def aux_group_action (locat : Loc) : tactic Unit :=
tactic.interactive.simp_core { failIfUnchanged := false } skip true
[expr ``(Rubin.GroupActionExt.smul_smul'), expr ``(Rubin.GroupActionExt.smul_eq_smul_inv),
expr ``(Rubin.GroupActionExt.smul_succ), expr ``(one_smul), expr ``(commutatorElement_def),
expr ``(mul_one), expr ``(one_mul), expr ``(one_pow), expr ``(one_zpow), expr ``(sub_self),
expr ``(add_neg_self), expr ``(neg_add_self), expr ``(neg_neg), expr ``(tsub_self),
expr ``(Int.ofNat_add), expr ``(Int.ofNat_mul), expr ``(Int.ofNat_zero),
expr ``(Int.ofNat_one), expr ``(Int.ofNat_bit0), expr ``(Int.ofNat_bit1),
expr ``(Int.mul_neg_eq_neg_mul_symm), expr ``(Int.neg_mul_eq_neg_mul_symm),
symm_expr ``(zpow_ofNat), symm_expr ``(zpow_neg_one), symm_expr ``(zpow_mul),
symm_expr ``(zpow_add_one), symm_expr ``(zpow_one_add), symm_expr ``(zpow_add),
expr ``(mul_zpow_neg_one), expr ``(zpow_zero), expr ``(mul_zpow), symm_expr ``(mul_assoc),
expr ``(Mathlib.Tactic.Group.zpow_trick), expr ``(Mathlib.Tactic.Group.zpow_trick_one),
expr ``(Mathlib.Tactic.Group.zpow_trick_one'), expr ``(zpow_trick_sub), expr ``(mul_one),
expr ``(one_mul), expr ``(one_pow), expr ``(one_zpow), expr ``(sub_self),
expr ``(add_neg_self), expr ``(neg_add_self), expr ``(neg_neg), expr ``(tsub_self),
expr ``(Int.ofNat_add), expr ``(Int.ofNat_mul), expr ``(Int.ofNat_zero),
expr ``(Int.ofNat_one), expr ``(Int.ofNat_bit0), expr ``(Int.ofNat_bit1),
expr ``(Int.mul_neg_eq_neg_mul_symm), expr ``(Int.neg_mul_eq_neg_mul_symm),
symm_expr ``(zpow_ofNat), symm_expr ``(zpow_neg_one), symm_expr ``(zpow_mul),
symm_expr ``(zpow_add_one), symm_expr ``(zpow_one_add), symm_expr ``(zpow_add),
expr ``(mul_zpow_neg_one), expr ``(zpow_zero), expr ``(mul_zpow), symm_expr ``(mul_assoc),
expr ``(Mathlib.Tactic.Group.zpow_trick), expr ``(Mathlib.Tactic.Group.zpow_trick_one),
expr ``(Mathlib.Tactic.Group.zpow_trick_one'), expr ``(zpow_trick_sub),
expr ``(Tactic.Ring.horner)]
[] locat >>
skip
#align tactic.interactive.aux_group_action tactic.interactive.aux_group_action
/-- Tactic for normalizing expressions in group actions, without assuming
commutativity, using only the group axioms without any information about
which group is manipulated.
Example:
```lean
example {G α : Type} [group G] [mul_action G α] (a b : G) (x y : α) (h : a • b • x = a • y) : b⁻¹ • y = x :=
begin
group_action at h, -- normalizes `h` which becomes `h : c = d`
rw ← h, -- the goal is now `a*d*d⁻¹ = a`
group_action -- which then normalized and closed
end
```
-/
unsafe def group_action (locat : parse location) : tactic Unit := do
aux_group_action locat
repeat (andthen (aux_group₂ locat) (aux_group_action locat))
#align tactic.interactive.group_action tactic.interactive.group_action
end Tactic.Interactive
add_tactic_doc
{ Name := "group_action"
category := DocCategory.tactic
declNames := [`tactic.interactive.group_action]
tags := ["decision procedure", "simplification"] }
end GroupActionTactic
namespace Rubin
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/
example (G α : Type _) [Group G] (a b c : G) [MulAction G α] (x : α) :
⁅a * b, c⁆ • x = (a * ⁅b, c⁆ * a⁻¹ * ⁅a, c⁆) • x := by
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]"
theorem Equiv.congr_ne {ι ι' : Type _} (e : ιι') {x y : ι} : x ≠ y → e x ≠ e y :=
by
intro x_ne_y
by_contra h
apply x_ne_y
convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply]
#align Rubin.equiv.congr_ne Rubin.Equiv.congr_ne
-- this definitely should be added to mathlib!
@[simp, to_additive]
theorem Subgroup.mk_smul {G α : Type _} [Group G] [MulAction G α] {S : Subgroup G} {g : G}
(hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a :=
rfl
#align Rubin.subgroup.mk_smul Rubin.Subgroup.mk_smul
#align Rubin.subgroup.mk_vadd Rubin.Subgroup.mk_vadd
----------------------------------------------------------------
section Rubin
variable {G α β : Type _} [Group G]
----------------------------------------------------------------
section Groups
theorem bracket_hMul {f g : G} : ⁅f, g⁆ = f * g * f⁻¹ * g⁻¹ := by tauto
#align Rubin.bracket_mul Rubin.bracket_hMul
def IsAlgebraicallyDisjoint (f g : G) :=
∀ h : G,
¬Commute f h →
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
#align Rubin.is_algebraically_disjoint Rubin.IsAlgebraicallyDisjoint
end Groups
----------------------------------------------------------------
section Actions
variable [MulAction G α]
/- warning: Rubin.orbit_bot clashes with orbit_bot -> Rubin.orbit_bot
Case conversion may be inaccurate. Consider using '#align Rubin.orbit_bot Rubin.orbit_botₓ'. -/
#print Rubin.orbit_bot /-
@[simp]
theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
MulAction.orbit (⊥ : Subgroup G) p = {p} :=
by
ext1
rw [MulAction.mem_orbit_iff]
constructor
· rintro ⟨⟨_, g_bot⟩, g_to_x⟩
rw [← g_to_x, Set.mem_singleton_iff, Rubin.GroupActionExt.subgroup_mk_smul]
exact (subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _
exact fun h => ⟨1, Eq.trans (one_smul _ p) (set.mem_singleton_iff.mp h).symm⟩
#align Rubin.orbit_bot Rubin.orbit_bot
-/
--------------------------------
section Smul''
theorem smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y :=
congr_arg ((· • ·) g) h
#align Rubin.smul_congr Rubin.smul_congr
theorem smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x :=
⟨fun h => (smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h =>
(smul_congr g h).symm.trans (smul_inv_smul g x)⟩
#align Rubin.smul_eq_iff_inv_smul_eq Rubin.smul_eq_iff_inv_smul_eq
theorem smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ) : g • x = x → g ^ n • x = x :=
by
induction n
simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff]
· intro h
nth_rw 2 [← (Rubin.GroupActionExt.smul_congr g (n_ih h)).trans h]
rw [← mul_smul, ← pow_succ]
#align Rubin.smul_pow_eq_of_smul_eq Rubin.smul_pow_eq_of_smul_eq
theorem smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ) : g • x = x → g ^ n • x = x :=
by
intro h
cases n
· let this.1 := Rubin.GroupActionExt.smul_pow_eq_of_smul_eq n h; finish
·
let this.1 :=
smul_eq_iff_inv_smul_eq.mp (Rubin.GroupActionExt.smul_pow_eq_of_smul_eq (1 + n) h);
finish
#align Rubin.smul_zpow_eq_of_smul_eq Rubin.smul_zpow_eq_of_smul_eq
def IsEquivariant (G : Type _) {β : Type _} [Group G] [MulAction G α] [MulAction G β] (f : α → β) :=
∀ g : G, ∀ x : α, f (g • x) = g • f x
#align Rubin.is_equivariant Rubin.IsEquivariant
def subsetImg' (g : G) (U : Set α) :=
{x | g⁻¹ • x ∈ U}
#align Rubin.subset_img' Rubin.subsetImg'
def subsetPreimg' (g : G) (U : Set α) :=
{x | g • x ∈ U}
#align Rubin.subset_preimg' Rubin.subsetPreimg'
def subsetImg (g : G) (U : Set α) :=
(· • ·) g '' U
#align Rubin.subset_img Rubin.subsetImg
infixl:60 "•''" => subsetImg
theorem subsetImg_def {g : G} {U : Set α} : g•''U = (· • ·) g '' U :=
rfl
#align Rubin.subset_img_def Rubin.subsetImg_def
theorem mem_smul'' {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ • x ∈ U :=
by
rw [Rubin.SmulImage.smulImage_def, Set.mem_image ((· • ·) g) U x]
constructor
· rintro ⟨y, yU, gyx⟩
let ygx : y = g⁻¹ • x := inv_smul_smul g y ▸ Rubin.GroupActionExt.smul_congr g⁻¹ gyx
exact ygx ▸ yU
· intro h
use⟨g⁻¹ • x, set.mem_preimage.mp h, smul_inv_smul g x⟩
#align Rubin.mem_smul'' Rubin.mem_smul''
theorem mem_inv_smul'' {x : α} {g : G} {U : Set α} : x ∈ g⁻¹•''U ↔ g • x ∈ U :=
by
let msi := @Rubin.SmulImage.mem_smulImage _ _ _ _ x g⁻¹ U
rw [inv_inv] at msi
exact msi
#align Rubin.mem_inv_smul'' Rubin.mem_inv_smul''
theorem hMul_smul'' (g h : G) (U : Set α) : g * h•''U = g•''(h•''U) :=
by
ext
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, ←
mul_smul, mul_inv_rev]
#align Rubin.mul_smul'' Rubin.hMul_smul''
@[simp]
theorem smul''_smul'' {g h : G} {U : Set α} : g•''(h•''U) = g * h•''U :=
(hMul_smul'' g h U).symm
#align Rubin.smul''_smul'' Rubin.smul''_smul''
@[simp]
theorem one_smul'' (U : Set α) : (1 : G)•''U = U :=
by
ext
rw [Rubin.SmulImage.mem_smulImage, inv_one, one_smul]
#align Rubin.one_smul'' Rubin.one_smul''
theorem disjoint_smul'' (g : G) {U V : Set α} : Disjoint U V → Disjoint (g•''U) (g•''V) :=
by
intro disjoint_U_V
rw [Set.disjoint_left]
rw [Set.disjoint_left] at disjoint_U_V
intro x x_in_gU
by_contra h
exact (disjoint_U_V (mem_smul''.mp x_in_gU)) (mem_smul''.mp h)
#align Rubin.disjoint_smul'' Rubin.disjoint_smul''
-- TODO: check if this is actually needed
theorem smul''_congr (g : G) {U V : Set α} : U = V → g•''U = g•''V :=
congr_arg fun W : Set α => g•''W
#align Rubin.smul''_congr Rubin.smul''_congr
theorem smul''_subset (g : G) {U V : Set α} : U ⊆ V → g•''U ⊆ g•''V :=
by
intro h1 x
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage]
exact fun h2 => h1 h2
#align Rubin.smul''_subset Rubin.smul''_subset
theorem smul''_union (g : G) {U V : Set α} : g•''U V = (g•''U) (g•''V) :=
by
ext
rw [Rubin.SmulImage.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.SmulImage.mem_smulImage,
Rubin.SmulImage.mem_smulImage]
#align Rubin.smul''_union Rubin.smul''_union
theorem smul''_inter (g : G) {U V : Set α} : g•''U ∩ V = (g•''U) ∩ (g•''V) :=
by
ext
rw [Set.mem_inter_iff, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage,
Rubin.SmulImage.mem_smulImage, Set.mem_inter_iff]
#align Rubin.smul''_inter Rubin.smul''_inter
theorem smul''_eq_inv_preimage {g : G} {U : Set α} : g•''U = (· • ·) g⁻¹ ⁻¹' U :=
by
ext
constructor
· intro h; rw [Set.mem_preimage]; exact mem_smul''.mp h
· intro h; rw [Rubin.SmulImage.mem_smulImage]; exact set.mem_preimage.mp h
#align Rubin.smul''_eq_inv_preimage Rubin.smul''_eq_inv_preimage
theorem smul''_eq_of_smul_eq {g h : G} {U : Set α} : (∀ x ∈ U, g • x = h • x) → g•''U = h•''U :=
by
intro hU
ext
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage]
constructor
· intro k; let a := congr_arg ((· • ·) h⁻¹) (hU (g⁻¹ • x) k);
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a k
· intro k; let a := congr_arg ((· • ·) g⁻¹) (hU (h⁻¹ • x) k);
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a.symm k
#align Rubin.smul''_eq_of_smul_eq Rubin.smul''_eq_of_smul_eq
end Smul''
--------------------------------
section Rubin.SmulSupport.Support
def support (α : Type _) [MulAction G α] (g : G) :=
{x : α | g • x ≠ x}
#align Rubin.support Rubin.support
theorem support_eq_not_fixedBy {g : G} : support α g = MulAction.fixedBy G α gᶜ := by tauto
#align Rubin.support_eq_not_fixed_by Rubin.support_eq_not_fixedBy
theorem mem_support {x : α} {g : G} : x ∈ support α g ↔ g • x ≠ x := by tauto
#align Rubin.mem_support Rubin.mem_support
theorem mem_not_support {x : α} {g : G} : x ∉ support α g ↔ g • x = x := by
rw [Rubin.SmulSupport.mem_support, Classical.not_not]
#align Rubin.mem_not_support Rubin.mem_not_support
theorem smul_in_support {g : G} {x : α} : x ∈ support α g → g • x ∈ support α g := fun h =>
h ∘ smul_left_cancel g
#align Rubin.smul_in_support Rubin.smul_in_support
theorem inv_smul_in_support {g : G} {x : α} : x ∈ support α g → g⁻¹ • x ∈ support α g := fun h k =>
h (smul_inv_smul g x ▸ smul_congr g k)
#align Rubin.inv_smul_in_support Rubin.inv_smul_in_support
theorem fixed_of_disjoint {g : G} {x : α} {U : Set α} :
x ∈ U → Disjoint U (support α g) → g • x = x := fun x_in_U disjoint_U_support =>
mem_not_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U)
#align Rubin.fixed_of_disjoint Rubin.fixed_of_disjoint
theorem fixes_subset_within_support (g : G) {U : Set α} : support α g ⊆ U → g•''U = U :=
by
intro support_in_U
ext x
cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with xmoved xfixed
exact
⟨fun _ => support_in_U xmoved, fun _ =>
mem_smul''.mpr (support_in_U (Rubin.SmulSupport.inv_smul_mem_support xmoved))⟩
rw [Rubin.SmulImage.mem_smulImage, smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp xfixed)]
#align Rubin.fixes_subset_within_support Rubin.fixes_subset_within_support
theorem moves_subset_within_support (g : G) (U V : Set α) : U ⊆ V → support α g ⊆ V → g•''U ⊆ V :=
fun U_in_V support_in_V => fixes_subset_within_support g support_in_V ▸ smul''_subset g U_in_V
#align Rubin.moves_subset_within_support Rubin.moves_subset_within_support
theorem support_hMul (g h : G) (α : Type _) [MulAction G α] :
support α (g * h) ⊆ support α g support α h :=
by
intro x x_in_support
by_contra h_support
let this.1 := not_or_distrib.mp h_support
exact
x_in_support
((mul_smul g h x).trans
((congr_arg ((· • ·) g) (mem_not_support.mp this.2)).trans <| mem_not_support.mp this.1))
#align Rubin.support_mul Rubin.support_hMul
theorem support_conjugate (α : Type _) [MulAction G α] (g h : G) :
support α (h * g * h⁻¹) = h•''support α g :=
by
ext
rw [Rubin.SmulSupport.mem_support, Rubin.SmulImage.mem_smulImage, Rubin.SmulSupport.mem_support,
mul_smul, mul_smul]
constructor
· intro h1; by_contra h2; exact h1 ((congr_arg ((· • ·) h) h2).trans (smul_inv_smul _ _))
· intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg ((· • ·) h⁻¹) h2)
#align Rubin.support_conjugate Rubin.support_conjugate
theorem support_inv (α : Type _) [MulAction G α] (g : G) : support α g⁻¹ = support α g :=
by
ext
rw [Rubin.SmulSupport.mem_support, Rubin.SmulSupport.mem_support]
constructor
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mp h2)
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mpr h2)
#align Rubin.support_inv Rubin.support_inv
theorem support_pow (α : Type _) [MulAction G α] (g : G) (j : ) :
support α (g ^ j) ⊆ support α g := by
intro x xmoved
by_contra xfixed
rw [Rubin.SmulSupport.mem_support] at xmoved
induction j
· apply xmoved; rw [pow_zero g, one_smul]
· apply xmoved
let j_ih := (congr_arg ((· • ·) g) (not_not.mp j_ih)).trans (mem_not_support.mp xfixed)
rw [← mul_smul, ← pow_succ] at j_ih
exact j_ih
#align Rubin.support_pow Rubin.support_pow
theorem support_comm (α : Type _) [MulAction G α] (g h : G) :
support α ⁅g, h⁆ ⊆ support α h (g•''support α h) :=
by
intro x x_in_support
by_contra all_fixed
rw [Set.mem_union] at all_fixed
cases' @or_not (h • x = x) with xfixed xmoved
· rw [Rubin.SmulSupport.mem_support, Rubin.bracket_mul, mul_smul,
smul_eq_iff_inv_smul_eq.mp xfixed, ← Rubin.SmulSupport.mem_support] at x_in_support
exact
((Rubin.SmulSupport.support_conjugate α h g).symm ▸ (not_or_distrib.mp all_fixed).2)
x_in_support
· exact all_fixed (Or.inl xmoved)
#align Rubin.support_comm Rubin.support_comm
theorem disjoint_support_comm (f g : G) {U : Set α} :
support α f ⊆ U → Disjoint U (g•''U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x :=
by
intro support_in_U disjoint_U x x_in_U
have support_conj : Rubin.SmulSupport.Support α (g * f⁻¹ * g⁻¹) ⊆ g•''U :=
((Rubin.SmulSupport.support_conjugate α f⁻¹ g).trans
(Rubin.SmulImage.smulImage_congr g (Rubin.SmulSupport.support_inv α f))).symm ▸
Rubin.SmulImage.smulImage_subset g support_in_U
have goal :=
(congr_arg ((· • ·) f)
(Rubin.SmulSupport.fixed_of_disjoint x_in_U
(Set.disjoint_of_subset_right support_conj disjoint_U))).symm
rw [← mul_smul, ← mul_assoc, ← mul_assoc] at goal
exact goal.symm
#align Rubin.disjoint_support_comm Rubin.disjoint_support_comm
end Rubin.SmulSupport.Support
-- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup
def rigidStabilizer' (G : Type _) [Group G] [MulAction G α] (U : Set α) : Set G :=
{g : G | ∀ x : α, g • x = x x ∈ U}
#align Rubin.rigid_stabilizer' Rubin.rigidStabilizer'
/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » U) -/
def rigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgroup G
where
carrier := {g : G | ∀ (x) (_ : x ∉ U), g • x = x}
hMul_mem' a b ha hb x x_notin_U := by rw [mul_smul a b x, hb x x_notin_U, ha x x_notin_U]
inv_mem' _ hg x x_notin_U := smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U)
one_mem' x _ := one_smul G x
#align Rubin.rigid_stabilizer Rubin.rigidStabilizer
theorem rist_supported_in_set {g : G} {U : Set α} : g ∈ rigidStabilizer G U → support α g ⊆ U :=
fun h x x_in_support => by_contradiction (x_in_support ∘ h x)
#align Rubin.rist_supported_in_set Rubin.rist_supported_in_set
theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) :
(rigidStabilizer G V : Set G) ⊆ (rigidStabilizer G U : Set G) :=
by
intro g g_in_ristV x x_notin_U
have x_notin_V : x ∉ V := by intro x_in_V; exact x_notin_U (V_ss_U x_in_V)
exact g_in_ristV x x_notin_V
#align Rubin.rist_ss_rist Rubin.rist_ss_rist
end Actions
----------------------------------------------------------------
section TopologicalActions
variable [TopologicalSpace α] [TopologicalSpace β]
class ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends MulAction G α where
Continuous : ∀ g : G, Continuous (@SMul.smul G α _ g)
#align Rubin.continuous_mul_action Rubin.ContinuousMulAction
structure EquivariantHomeomorph (G α β : Type _) [Group G] [TopologicalSpace α] [TopologicalSpace β]
[MulAction G α] [MulAction G β] extends Homeomorph α β where
equivariant : IsEquivariant G to_fun
#align Rubin.equivariant_homeomorph Rubin.EquivariantHomeomorph
theorem equivariantFun [MulAction G α] [MulAction G β] (h : EquivariantHomeomorph G α β) :
IsEquivariant G h.toFun :=
h.equivariant
#align Rubin.equivariant_fun Rubin.equivariantFun
theorem equivariantInv [MulAction G α] [MulAction G β] (h : EquivariantHomeomorph G α β) :
IsEquivariant G h.invFun := by
intro g x
let e := congr_arg h.inv_fun (h.equivariant g (h.inv_fun x))
rw [h.left_inv _, h.right_inv _] at e
exact e.symm
#align Rubin.equivariant_inv Rubin.equivariantInv
variable [ContinuousMulAction G α]
theorem img_open_open (g : G) (U : Set α) (h : IsOpen U) [ContinuousMulAction G α] :
IsOpen (g•''U) := by
rw [Rubin.SmulImage.smulImage_eq_inv_preimage]
exact Continuous.isOpen_preimage (continuous_mul_action.continuous g⁻¹) U h
#align Rubin.img_open_open Rubin.img_open_open
theorem support_open (g : G) [TopologicalSpace α] [T2Space α] [ContinuousMulAction G α] :
IsOpen (support α g) := by
apply is_open_iff_forall_mem_open.mpr
intro x xmoved
rcases T2Space.t2 (g • x) x xmoved with ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩
exact
⟨V ∩ (g⁻¹•''U), fun y yW =>
@Disjoint.ne_of_mem α U V disjoint_U_V (g • y) y
(mem_inv_smul''.mp (Set.mem_of_mem_inter_right yW)) (Set.mem_of_mem_inter_left yW),
IsOpen.inter open_V (Rubin.Topological.img_open_open g⁻¹ U open_U),
⟨x_in_V, mem_inv_smul''.mpr gx_in_U⟩⟩
#align Rubin.support_open Rubin.support_open
end TopologicalActions
----------------------------------------------------------------
section FaithfulActions
variable [MulAction G α] [FaithfulSMul G α]
theorem faithful_moves_point {g : G} (h2 : ∀ x : α, g • x = x) : g = 1 :=
haveI h3 : ∀ x : α, g • x = (1 : G) • x := fun x => (h2 x).symm ▸ (one_smul G x).symm
eq_of_smul_eq_smul h3
#align Rubin.faithful_moves_point Rubin.faithful_moves_point
theorem faithful_moves_point' {g : G} (α : Type _) [MulAction G α] [FaithfulSMul G α] :
g ≠ 1 → ∃ x : α, g • x ≠ x := fun k =>
by_contradiction fun h => k <| faithful_moves_point <| Classical.not_exists_not.mp h
#align Rubin.faithful_moves_point' Rubin.faithful_moves_point'
theorem faithful_rist_moves_point {g : G} {U : Set α} :
g ∈ rigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x :=
by
intro g_rigid g_ne_one
rcases Rubin.faithful_moves_point'₁ α g_ne_one with ⟨x, xmoved⟩
exact ⟨x, rist_supported_in_set g_rigid xmoved, xmoved⟩
#align Rubin.faithful_rist_moves_point Rubin.faithful_rist_moves_point
theorem ne_one_support_nempty {g : G} : g ≠ 1 → (support α g).Nonempty :=
by
intro h1
cases' Rubin.faithful_moves_point'₁ α h1 with x _
use x
#align Rubin.ne_one_support_nempty Rubin.ne_one_support_nempty
-- FIXME: somehow clashes with another definition
theorem disjoint_commute {f g : G} : Disjoint (support α f) (support α g) → Commute f g :=
by
intro hdisjoint
rw [← commutatorElement_eq_one_iff_commute]
apply @Rubin.faithful_moves_point₁ _ α
intro x
rw [Rubin.bracket_mul, mul_smul, mul_smul, mul_smul]
cases' @or_not (x ∈ Rubin.SmulSupport.Support α f) with hfmoved hffixed
·
rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp (set.disjoint_left.mp hdisjoint hfmoved)),
mem_not_support.mp
(set.disjoint_left.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hfmoved)),
smul_inv_smul]
cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with hgmoved hgfixed
·
rw [smul_eq_iff_inv_smul_eq.mp
(mem_not_support.mp <|
set.disjoint_right.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hgmoved)),
smul_inv_smul, mem_not_support.mp hffixed]
·
rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hgfixed),
smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hffixed), mem_not_support.mp hgfixed,
mem_not_support.mp hffixed]
#align Rubin.disjoint_commute Rubin.disjoint_commute
end FaithfulActions
----------------------------------------------------------------
section RubinActions
variable [TopologicalSpace α] [TopologicalSpace β]
def HasNoIsolatedPoints (α : Type _) [TopologicalSpace α] :=
∀ x : α, (nhdsWithin x ({x}ᶜ)).ne_bot
#align Rubin.has_no_isolated_points Rubin.HasNoIsolatedPoints
def IsLocallyDense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
∀ U : Set α, ∀ p ∈ U, p ∈ interior (closure (MulAction.orbit (rigidStabilizer G U) p))
#align Rubin.is_locally_dense Rubin.IsLocallyDense
structure RubinActionCat (G α : Type _) extends Group G, TopologicalSpace α, MulAction G α,
FaithfulSMul G α where
locally_compact : LocallyCompactSpace α
hausdorff : T2Space α
no_isolated_points : HasNoIsolatedPoints α
locallyDense : IsLocallyDense G α
#align Rubin.rubin_action Rubin.RubinActionCat
end RubinActions
----------------------------------------------------------------
section Rubin.Period.period
variable [MulAction G α]
noncomputable def period (p : α) (g : G) : :=
sInf {n : | n > 0 ∧ g ^ n • p = p}
#align Rubin.period Rubin.period
theorem period_le_fix {p : α} {g : G} {m : } (m_pos : m > 0) (gmp_eq_p : g ^ m • p = p) :
0 < period p g ∧ period p g ≤ m := by
constructor
· by_contra h'; have period_zero : Rubin.Period.period p g = 0; linarith;
rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, h_1⟩; linarith;
exact set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩
exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩
#align Rubin.period_le_fix Rubin.period_le_fix
theorem notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0) (period_pos : period p g > 0)
(pmoves : ∀ i : , 0 < i → i < n → g ^ i • p ≠ p) : n ≤ period p g :=
by
by_contra period_le
exact
(pmoves (Rubin.Period.period p g) period_pos (not_le.mp period_le))
(Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2
#align Rubin.notfix_le_period Rubin.notfix_le_period
theorem notfix_le_period' {p : α} {g : G} {n : } (n_pos : n > 0) (period_pos : period p g > 0)
(pmoves : ∀ i : Fin n, 0 < (i : ) → g ^ (i : ) • p ≠ p) : n ≤ period p g :=
notfix_le_period n_pos period_pos fun (i : ) (i_pos : 0 < i) (i_lt_n : i < n) =>
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
#align Rubin.notfix_le_period' Rubin.notfix_le_period'
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/
theorem period_neutral_eq_one (p : α) : period p (1 : G) = 1 :=
by
have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 :=
Rubin.Period.period_le_fix (by norm_num : 1 > 0)
(by
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]" :
(1 : G) ^ 1 • p = p)
linarith
#align Rubin.period_neutral_eq_one Rubin.period_neutral_eq_one
def periods (U : Set α) (H : Subgroup G) : Set :=
{n : | ∃ (p : U) (g : H), period (p : α) (g : G) = n}
#align Rubin.periods Rubin.periods
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/
-- TODO: split into multiple lemmas
theorem period_lemma {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
(periods U H).Nonempty ∧
BddAbove (periods U H) ∧ ∃ (m : ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p :=
by
rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩
have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by intro p g; rw [gm_eq_one g];
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]"
have periods_nonempty : (Rubin.Period.periods U H).Nonempty := by use 1; let p := U_nonempty.some;
use p; exact Set.Nonempty.some_mem U_nonempty; use 1; exact Rubin.Period.period_neutral_eq_one p
have periods_bounded : BddAbove (Rubin.Period.periods U H) := by use m; intro some_period hperiod;
rcases hperiod with ⟨p, g, hperiod⟩; rw [← hperiod];
exact (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).2
exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
#align Rubin.period_lemma Rubin.period_lemma
theorem period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∃ (p : U) (g : H) (n : ), n > 0 ∧ period (p : α) (g : G) = n ∧ n = sSup (periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
rcases Nat.sSup_mem periods_nonempty periods_bounded with ⟨p, g, hperiod⟩
exact
⟨p, g, Sup (Rubin.Period.periods U H),
hperiod ▸ (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1, hperiod, rfl⟩
#align Rubin.period_from_exponent Rubin.period_from_exponent
theorem zero_lt_period_le_sSup_periods {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : U) (g : H), 0 < period (p : α) (g : G) ∧ period (p : α) (g : G) ≤ sSup (periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
intro p g
have period_in_periods : Rubin.Period.period (p : α) (g : G) ∈ Rubin.Period.periods U H := by
use p; use g
exact
⟨(Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1,
le_csSup periods_bounded period_in_periods⟩
#align Rubin.zero_lt_period_le_Sup_periods Rubin.zero_lt_period_le_sSup_periods
theorem pow_period_fix (p : α) (g : G) : g ^ period p g • p = p :=
by
cases eq_zero_or_neZero (Rubin.Period.period p g)
· rw [h]; finish
·
exact
(Nat.sInf_mem
(Nat.nonempty_of_pos_sInf
(Nat.pos_of_ne_zero (@NeZero.ne _ _ (Rubin.Period.period p g) h)))).2
#align Rubin.pow_period_fix Rubin.pow_period_fix
end Rubin.Period.period
----------------------------------------------------------------
section AlgebraicDisjointness
variable [TopologicalSpace α] [ContinuousMulAction G α] [FaithfulSMul G α]
def IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
∀ U : Set α, IsOpen U → Set.Nonempty U → rigidStabilizer G U ≠ ⊥
#align Rubin.is_locally_moving Rubin.IsLocallyMoving
-- lemma dense_locally_moving : t2_space α ∧ has_no_isolated_points α ∧ is_locally_dense G α → is_locally_moving G α := begin
-- rintros ⟨t2α,nipα,ildGα⟩ U ioU neU,
-- by_contra,
-- have some_in_U := ildGα U neU.some neU.some_mem,
-- rw [h,orbit_bot G neU.some,@closure_singleton α _ (@t2_space.t1_space α _ t2α) neU.some,@interior_singleton α _ neU.some (nipα neU.some)] at some_in_U,
-- tauto
-- end
-- lemma disjoint_nbhd {g : G} {x : α} [t2_space α] : g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ disjoint U (g •'' U) := begin
-- intro xmoved,
-- rcases t2_space.t2 (g • x) x xmoved with ⟨V,W,open_V,open_W,gx_in_V,x_in_W,disjoint_V_W⟩,
-- let U := (g⁻¹ •'' V) ∩ W,
-- use U,
-- split,
-- exact is_open.inter (img_open_open g⁻¹ V open_V) open_W,
-- split,
-- exact ⟨mem_inv_smul''.mpr gx_in_V,x_in_W⟩,
-- exact set.disjoint_of_subset
-- (set.inter_subset_right (g⁻¹•''V) W)
-- (λ y hy, smul_inv_smul g y ▸ mem_inv_smul''.mp (set.mem_of_mem_inter_left (mem_smul''.mp hy)) : g•''U ⊆ V)
-- disjoint_V_W.symm
-- end
-- lemma disjoint_nbhd_in {g : G} {x : α} [t2_space α] {V : set α} : is_open V → x ∈ V → g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ U ⊆ V ∧ disjoint U (g •'' U) := begin
-- intros open_V x_in_V xmoved,
-- rcases disjoint_nbhd xmoved with ⟨W,open_W,x_in_W,disjoint_W⟩,
-- let U := W ∩ V,
-- use U,
-- split,
-- exact is_open.inter open_W open_V,
-- split,
-- exact ⟨x_in_W,x_in_V⟩,
-- split,
-- exact set.inter_subset_right W V,
-- exact set.disjoint_of_subset
-- (set.inter_subset_left W V)
-- ((@smul''_inter _ _ _ _ g W V).symm ▸ set.inter_subset_left (g•''W) (g•''V) : g•''U ⊆ g•''W)
-- disjoint_W
-- end
-- lemma rewrite_Union (f : fin 2 × fin 2 → set α) : ((i : fin 2 × fin 2), f i) = (f (0,0) f (0,1)) (f (1,0) f (1,1)) := begin
-- ext,
-- simp only [set.mem_Union, set.mem_union],
-- split,
-- { simp only [forall_exists_index],
-- intro i,
-- fin_cases i; simp {contextual := tt}, },
-- { rintro ((h|h)|(h|h)); exact ⟨_, h⟩, },
-- end
-- lemma proposition_1_1_1 (f g : G) (locally_moving : is_locally_moving G α) [t2_space α] : disjoint (support α f) (support α g) → is_algebraically_disjoint f g := begin
-- intros disjoint_f_g h hfh,
-- let support_f := support α f,
-- -- h is not the identity on support α f
-- cases set.not_disjoint_iff.mp (mt (@disjoint_commute G α _ _ _ _ _) hfh) with x hx,
-- let x_in_support_f := hx.1,
-- let hx_ne_x := mem_support.mp hx.2,
-- -- so since α is Hausdoff there is V nonempty ⊆ support α f with h•''V disjoint from V
-- rcases disjoint_nbhd_in (support_open f) x_in_support_f hx_ne_x with ⟨V,open_V,x_in_V,V_in_support,disjoint_img_V⟩,
-- let ristV_ne_bot := locally_moving V open_V (set.nonempty_of_mem x_in_V),
-- -- let f₂ be a nontrivial element of rigid_stabilizer G V
-- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨f₂,f₂_in_ristV,f₂_ne_one⟩,
-- -- again since α is Hausdorff there is W nonempty ⊆ V with f₂•''W disjoint from W
-- rcases faithful_moves_point' α f₂_ne_one with ⟨y,ymoved⟩,
-- let y_in_V : y ∈ V := (rist_supported_in_set f₂_in_ristV) (mem_support.mpr ymoved),
-- rcases disjoint_nbhd_in open_V y_in_V ymoved with ⟨W,open_W,y_in_W,W_in_V,disjoint_img_W⟩,
-- -- let f₁ be a nontrivial element of rigid_stabilizer G W
-- let ristW_ne_bot := locally_moving W open_W (set.nonempty_of_mem y_in_W),
-- rcases (or_iff_right ristW_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨f₁,f₁_in_ristW,f₁_ne_one⟩,
-- use f₁, use f₂,
-- -- note that f₁,f₂ commute with g since their support is in support α f
-- split,
-- exact disjoint_commute (set.disjoint_of_subset_left (set.subset.trans (set.subset.trans (rist_supported_in_set f₁_in_ristW) W_in_V) V_in_support) disjoint_f_g),
-- split,
-- exact disjoint_commute (set.disjoint_of_subset_left (set.subset.trans (rist_supported_in_set f₂_in_ristV) V_in_support) disjoint_f_g),
-- -- we claim that [f₁,[f₂,h]] is a nontrivial element of centralizer G g
-- let k := ⁅f₂,h⁆,
-- -- first, h*f₂⁻¹*h⁻¹ is supported on h V, so k := [f₂,h] agrees with f₂ on V
-- have h2 : ∀z ∈ W, f₂•z = k•z := λ z z_in_W,
-- (disjoint_support_comm f₂ h (rist_supported_in_set f₂_in_ristV) disjoint_img_V z (W_in_V z_in_W)).symm,
-- -- then k*f₁⁻¹*k⁻¹ is supported on k W = f₂ W, so [f₁,k] is supported on W f₂ W ⊆ V ⊆ support f, so commutes with g.
-- have h3 : support α ⁅f₁,k⁆ ⊆ support α f := begin
-- let := (support_comm α k f₁).trans (set.union_subset_union (rist_supported_in_set f₁_in_ristW) (smul''_subset k $ rist_supported_in_set f₁_in_ristW)),
-- rw [← commutator_element_inv,support_inv,(smul''_eq_of_smul_eq h2).symm] at this,
-- exact (this.trans $ (set.union_subset_union W_in_V (moves_subset_within_support f₂ W V W_in_V $ rist_supported_in_set f₂_in_ristV)).trans $ eq.subset V.union_self).trans V_in_support
-- end,
-- split,
-- exact disjoint_commute (set.disjoint_of_subset_left h3 disjoint_f_g),
-- -- finally, [f₁,k] agrees with f₁ on W, so is not the identity.
-- have h4 : ∀z ∈ W, ⁅f₁,k⁆•z = f₁•z :=
-- disjoint_support_comm f₁ k (rist_supported_in_set f₁_in_ristW) (smul''_eq_of_smul_eq h2 ▸ disjoint_img_W),
-- rcases faithful_rist_moves_point f₁_in_ristW f₁_ne_one with ⟨z,z_in_W,z_moved⟩,
-- by_contra h5,
-- exact ((h4 z z_in_W).symm ▸ z_moved : ⁅f₁, k⁆ • z ≠ z) ((congr_arg (λg : G, g•z) h5).trans (one_smul G z)),
-- end
-- @[simp] lemma smul''_mul {g h : G} {U : set α} : g •'' (h •'' U) = (g*h) •'' U :=
-- (mul_smul'' g h U).symm
-- lemma disjoint_nbhd_fin {ι : Type*} [fintype ι] {f : ι → G} {x : α} [t2_space α] : (λi : ι, f i • x).injective → ∃U : set α, is_open U ∧ x ∈ U ∧ (∀i j : ι, i ≠ j → disjoint (f i •'' U) (f j •'' U)) := begin
-- intro f_injective,
-- let disjoint_hyp := λi j (i_ne_j : i≠j), let x_moved : ((f j)⁻¹ * f i) • x ≠ x := begin
-- by_contra,
-- let := smul_congr (f j) h,
-- rw [mul_smul, ← mul_smul,mul_right_inv,one_smul] at this,
-- from i_ne_j (f_injective this),
-- end in disjoint_nbhd x_moved,
-- let ι2 := { p : ι×ι // p.1 ≠ p.2 },
-- let U := ⋂(p : ι2), (disjoint_hyp p.1.1 p.1.2 p.2).some,
-- use U,
-- split,
-- exact is_open_Inter (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.1),
-- split,
-- exact set.mem_Inter.mpr (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.2.1),
-- intros i j i_ne_j,
-- let U_inc := set.Inter_subset (λ p : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some) ⟨⟨i,j⟩,i_ne_j⟩,
-- let := (disjoint_smul'' (f j) (set.disjoint_of_subset U_inc (smul''_subset ((f j)⁻¹ * (f i)) U_inc) (disjoint_hyp i j i_ne_j).some_spec.2.2)).symm,
-- simp only [subtype.val_eq_coe, smul''_mul, mul_inv_cancel_left] at this,
-- from this
-- end
-- lemma moves_inj {g : G} {x : α} {n : } (period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- intros i j same_img,
-- by_contra i_ne_j,
-- let same_img' := congr_arg ((•) (g ^ (-(j : )))) same_img,
-- simp only [inv_smul_smul] at same_img',
-- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img',
-- simp only [add_left_neg, zpow_zero, one_smul] at same_img',
-- let ij := |(i:) - (j:)|,
-- rw ← sub_eq_add_neg at same_img',
-- have xfixed : g^ij • x = x := begin
-- cases abs_cases ((i:) - (j:)),
-- { rw ← h.1 at same_img', exact same_img' },
-- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' }
-- end,
-- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)),
-- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)),
-- rw zero_sub at neg_le,
-- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j),
-- rw sub_zero at le_pos,
-- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩,
-- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed,
-- end
-- lemma int_to_nat (k : ) (k_pos : k ≥ 1) : k = k.nat_abs := begin
-- cases (int.nat_abs_eq k),
-- { exact h },
-- { have : -(k.nat_abs : ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg,
-- rw ← h at this, by_contra, linarith }
-- end
-- lemma moves_inj_N {g : G} {x : α} {n : } (period_ge_n' : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x,
-- { intros k one_le_k k_lt_n,
-- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)),
-- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)),
-- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n,
-- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this,
-- exact this },
-- have := moves_inj period_ge_n,
-- finish
-- end
-- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:) • x) := begin
-- apply moves_inj,
-- intros k k_ge_1 k_lt_5,
-- by_contra xfixed,
-- have k_div_12 : k * (12 / k) = 12 := begin
-- interval_cases using k_ge_1 k_lt_5; norm_num
-- end,
-- have veryfixed : g^12 • x = x := begin
-- let := smul_zpow_eq_of_smul_eq (12/k) xfixed,
-- rw [← zpow_mul,k_div_12] at this,
-- norm_cast at this
-- end,
-- exact xmoves veryfixed
-- end
-- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin
-- intros locally_moving alg_disjoint,
-- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty
-- by_contra not_disjoint,
-- let U := support α f ∩ support α (g^12),
-- have U_nonempty : U.nonempty := set.not_disjoint_iff_nonempty_inter.mp not_disjoint,
-- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint
-- let x := U_nonempty.some,
-- have five_points : function.injective (λi : fin 5, g^(i:) • x) := moves_1234_of_moves_12 (mem_support.mp $ (set.inter_subset_right _ _) U_nonempty.some_mem),
-- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩,
-- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩,
-- simp only at disjoint_img_V₁,
-- let V := V₀ ∩ V₁,
-- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V
-- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩),
-- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- have comm_non_trivial : ¬commute f h := begin
-- by_contra comm_trivial,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩,
-- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (set.disjoint_of_subset (set.inter_subset_left V₀ V₁) (smul''_subset f (set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V,
-- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm,
-- exact z_moved act_comm.symm,
-- end,
-- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g)
-- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩,
-- let h' := ⁅f₁,⁅f₂,h⁆⁆,
-- -- now observe that supp([f₂, h]) ⊆ V f₂(V), and by the same reasoning supp(h')⊆Vf₁(V)f₂(V)f₁f₂(V)
-- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V (f₂ •'' V) := (support_comm α f₂ h).trans (set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV),
-- have support_h' : support α h' ⊆ (i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin
-- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)),
-- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this,
-- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V),
-- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u,
-- exact rw_u.symm ▸ this,
-- end,
-- -- since h' is nontrivial, it has at least one point p in its support
-- cases faithful_moves_point' α h'_non_trivial with p p_moves,
-- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h')
-- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin
-- intro i,
-- rw mem_support,
-- by_contra p_fixed,
-- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed,
-- exact p_moves p_fixed,
-- end,
-- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂}
-- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial,
-- let choice := λi : fin 5, (set.mem_Union.mp $ support_h' $ gi_in_support i).some,
-- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩,
-- clear h_1_w h_1_h_h_w pigeonhole,
-- let k := f₁^(choice i).1.val*f₂^(choice i).2.val,
-- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice,
-- rw ← same_choice },
-- have g_i : g^i.val • p ∈ k •'' V := (set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec,
-- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec,
-- -- but since g^(ji)(V) is disjoint from V and k commutes with g, we know that g^(ji)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V).
-- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin
-- let := (disjoint_smul'' (g^(-(i.val+j.val : ))) (disjoint_img_V₁ i j i_ne_j)).symm,
-- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this,
-- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this,
-- from set.disjoint_of_subset (smul''_subset _ (set.inter_subset_right V₀ V₁)) (smul''_subset _ (set.inter_subset_right V₀ V₁)) this
-- end,
-- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val),
-- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin
-- let this := disjoint_smul'' k g_disjoint,
-- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val,
-- ← (k_commutes.symm.inv_left.pow_left i.val).eq,
-- ← (k_commutes.symm.inv_left.pow_left j.val).eq,
-- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this,
-- from this
-- end,
-- exact set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j)
-- end
-- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin
-- intro alg_disjoint,
-- by_contra non_commute,
-- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩,
-- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d,
-- tauto
-- end
-- section remark_1_3
-- def G := equiv.perm (fin 2)
-- def σ := equiv.swap (0 : fin 2) (1 : fin 2)
-- example : is_algebraically_disjoint σ σ := begin
-- intro h,
-- fin_cases h,
-- intro hyp1,
-- exfalso,
-- swap, intro hyp2, exfalso,
-- -- is commute decidable? cc,
-- sorry -- dec_trivial
-- sorry -- second sorry needed
-- end
-- end remark_1_3
end AlgebraicDisjointness
----------------------------------------------------------------
section Rubin.RegularSupport.RegularSupport
variable [TopologicalSpace α] [ContinuousMulAction G α]
def interiorClosure (U : Set α) :=
interior (closure U)
#align Rubin.interior_closure Rubin.interiorClosure
theorem isOpen_interiorClosure (U : Set α) : IsOpen (interiorClosure U) :=
isOpen_interior
#align Rubin.is_open_interior_closure Rubin.isOpen_interiorClosure
theorem interiorClosure_mono {U V : Set α} : U ⊆ V → interiorClosure U ⊆ interiorClosure V :=
interior_mono ∘ closure_mono
#align Rubin.interior_closure_mono Rubin.interiorClosure_mono
def Set.IsRegularOpen (U : Set α) :=
interiorClosure U = U
#align Rubin.set.is_regular_open Rubin.Set.IsRegularOpen
theorem Set.is_regular_def (U : Set α) : U.IsRegularOpen ↔ interiorClosure U = U := by rfl
#align Rubin.set.is_regular_def Rubin.Set.is_regular_def
theorem IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆ interior (closure U) :=
by
intro U_open x x_in_U
apply interior_mono subset_closure
rw [U_open.interior_eq]
exact x_in_U
#align Rubin.is_open.in_closure Rubin.IsOpen.in_closure
theorem IsOpen.interiorClosure_subset {U : Set α} : IsOpen U → U ⊆ interiorClosure U := fun h =>
(subset_interior_iff_isOpen.mpr h).trans (interior_mono subset_closure)
#align Rubin.is_open.interior_closure_subset Rubin.IsOpen.interiorClosure_subset
theorem regular_interiorClosure (U : Set α) : (interiorClosure U).IsRegularOpen :=
by
rw [Rubin.RegularSupport.Set.is_regular_def]
apply Set.Subset.antisymm
exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure))
exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure)
#align Rubin.regular_interior_closure Rubin.regular_interiorClosure
def regularSupport (α : Type _) [TopologicalSpace α] [MulAction G α] (g : G) :=
interiorClosure (support α g)
#align Rubin.regular_support Rubin.regularSupport
theorem regular_regularSupport {g : G} : (regularSupport α g).IsRegularOpen :=
regular_interiorClosure _
#align Rubin.regular_regular_support Rubin.regular_regularSupport
theorem support_in_regularSupport [T2Space α] (g : G) : support α g ⊆ regularSupport α g :=
IsOpen.interiorClosure_subset (support_open g)
#align Rubin.support_in_regular_support Rubin.support_in_regularSupport
theorem mem_regularSupport (g : G) (U : Set α) :
U.IsRegularOpen → g ∈ rigidStabilizer G U → regularSupport α g ⊆ U := fun U_ro g_moves =>
(Set.is_regular_def _).mp U_ro ▸ interiorClosure_mono (rist_supported_in_set g_moves)
#align Rubin.mem_regular_support Rubin.mem_regularSupport
-- FIXME: Weird naming?
def algebraicCentralizer (f : G) : Set G :=
{h | ∃ g, h = g ^ 12 ∧ IsAlgebraicallyDisjoint f g}
#align Rubin.algebraic_centralizer Rubin.algebraicCentralizer
end Rubin.RegularSupport.RegularSupport
-- ----------------------------------------------------------------
-- section finite_exponent
-- lemma coe_nat_fin {n i : } (h : i < n) : ∃ (i' : fin n), i = i' := ⟨ ⟨ i, h ⟩, rfl ⟩
-- variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α]
-- lemma distinct_images_from_disjoint {g : G} {V : set α} {n : }
-- (n_pos : 0 < n)
-- (h_disj : ∀ (i j : fin n) (i_ne_j : i ≠ j), disjoint (g ^ (i : ) •'' V) (g ^ (j : ) •'' V)) :
-- ∀ (q : α) (hq : q ∈ V) (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ∉ V :=
-- begin
-- intros q hq i i_pos hcontra,
-- have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : fin n), { intro, finish },
-- have hcontra' : g ^ (i : ) • (q : α) ∈ g ^ (i : ) •'' V, exact ⟨ q, hq, rfl ⟩,
-- have giq_notin_V := set.disjoint_left.mp (h_disj i (⟨ 0, n_pos ⟩ : fin n) i_ne_zero) hcontra',
-- exact ((by finish : g ^ 0•''V = V) ▸ giq_notin_V) hcontra
-- end
-- lemma moves_inj_period {g : G} {p : α} {n : } (period_eq_n : period p g = n) : function.injective (λ (i : fin n), g ^ (i : ) • p) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • p ≠ p,
-- { intros k one_le_k k_lt_n gkp_eq_p,
-- have := period_le_fix (nat.succ_le_iff.mp one_le_k) gkp_eq_p,
-- rw period_eq_n at this,
-- linarith },
-- exact moves_inj_N period_ge_n
-- end
-- lemma lemma_2_2 {α : Type u_2} [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] [t2_space α]
-- (U : set α) (U_open : is_open U) (locally_moving : is_locally_moving G α) :
-- U.nonempty → monoid.exponent (rigid_stabilizer G U) = 0 :=
-- begin
-- intro U_nonempty,
-- by_contra exp_ne_zero,
-- rcases (period_from_exponent U U_nonempty exp_ne_zero) with ⟨ p, g, n, n_pos, hpgn, n_eq_Sup ⟩,
-- rcases disjoint_nbhd_fin (moves_inj_period hpgn) with ⟨ V', V'_open, p_in_V', disj' ⟩,
-- dsimp at disj',
-- let V := U ∩ V',
-- have V_ss_U : V ⊆ U := set.inter_subset_left U V',
-- have V'_ss_V : V ⊆ V' := set.inter_subset_right U V',
-- have V_open : is_open V := is_open.inter U_open V'_open,
-- have p_in_V : (p : α) ∈ V := ⟨ subtype.mem p, p_in_V' ⟩,
-- have disj : ∀ (i j : fin n), ¬ i = j → disjoint (↑g ^ ↑i•''V) (↑g ^ ↑j•''V),
-- { intros i j i_ne_j W W_ss_giV W_ss_gjV,
-- exact disj' i j i_ne_j
-- (set.subset.trans W_ss_giV (smul''_subset (↑g ^ ↑i) V'_ss_V))
-- (set.subset.trans W_ss_gjV (smul''_subset (↑g ^ ↑j) V'_ss_V)) },
-- have ristV_ne_bot := locally_moving V V_open (set.nonempty_of_mem p_in_V),
-- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨ q, q_in_V, hq_ne_q ⟩,
-- have hg_in_ristU : (h : G) * (g : G) ∈ rigid_stabilizer G U := (rigid_stabilizer G U).mul_mem' (rist_ss_rist V_ss_U h_in_ristV) (subtype.mem g),
-- have giq_notin_V : ∀ (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ∉ V := distinct_images_from_disjoint n_pos disj q q_in_V,
-- have giq_ne_q : ∀ (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ≠ (q : α),
-- { intros i i_pos giq_eq_q, exact (giq_eq_q ▸ (giq_notin_V i i_pos)) q_in_V, },
-- have q_in_U : q ∈ U, { have : q ∈ U ∩ V' := q_in_V, exact this.1 },
-- -- We have (hg)^i q = g^i q for all 0 < i < n
-- have pow_hgq_eq_pow_gq : ∀ (i : fin n), (i : ) < n → (h * g) ^ (i : ) • q = (g : G) ^ (i : ) • q,
-- { intros i, induction (i : ) with i',
-- { intro, repeat {rw pow_zero} },
-- { intro succ_i'_lt_n,
-- rw [smul_succ, ih (nat.lt_of_succ_lt succ_i'_lt_n), smul_smul, mul_assoc, ← smul_smul, ← smul_smul, ← smul_succ],
-- have image_q_notin_V : g ^ i'.succ • q ∉ V,
-- { have i'succ_ne_zero := ne_zero.pos i'.succ,
-- exact giq_notin_V (⟨ i'.succ, succ_i'_lt_n ⟩ : fin n) i'succ_ne_zero },
-- exact by_contradiction (λ c, c (by_contradiction (λ c', image_q_notin_V ((rist_supported_in_set h_in_ristV) c')))) } },
-- -- Combined with g^i q ≠ q, this yields (hg)^i q ≠ q for all 0 < i < n
-- have hgiq_ne_q : ∀ (i : fin n), (i : ) > 0 → (h * g) ^ (i : ) • q ≠ q,
-- { intros i i_pos, rw pow_hgq_eq_pow_gq i (fin.is_lt i), by_contra c, exact (giq_notin_V i i_pos) (c.symm ▸ q_in_V) },
-- -- This even holds for i = n
-- have hgnq_ne_q : (h * g) ^ n • q ≠ q,
-- { -- Rewrite (hg)^n q = hg^n q
-- have npred_lt_n : n.pred < n, exact (nat.succ_pred_eq_of_pos n_pos) ▸ (lt_add_one n.pred),
-- rcases coe_nat_fin npred_lt_n with ⟨ i', i'_eq_pred_n ⟩,
-- have hgi'q_eq_gi'q := pow_hgq_eq_pow_gq i' (i'_eq_pred_n ▸ npred_lt_n),
-- have : n = (i' : ).succ := i'_eq_pred_n ▸ (nat.succ_pred_eq_of_pos n_pos).symm,
-- rw [this, smul_succ, hgi'q_eq_gi'q, ← smul_smul, ← smul_succ, ← this],
-- -- Now it follows from g^n q = q and h q ≠ q
-- have n_le_period_qg := notfix_le_period' n_pos ((zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g)).1 giq_ne_q,
-- have period_qg_le_n := (zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g).2, rw ← n_eq_Sup at period_qg_le_n,
-- exact (ge_antisymm period_qg_le_n n_le_period_qg).symm ▸ ((pow_period_fix q (g : G)).symm ▸ hq_ne_q) },
-- -- Finally, we derive a contradiction
-- have period_pos_le_n := zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) (⟨ h * g, hg_in_ristU ⟩ : rigid_stabilizer G U),
-- rw ← n_eq_Sup at period_pos_le_n,
-- cases (lt_or_eq_of_le period_pos_le_n.2),
-- { exact (hgiq_ne_q (⟨ (period (q : α) ((h : G) * (g : G))), h_1 ⟩ : fin n) period_pos_le_n.1) (pow_period_fix (q : α) ((h : G) * (g : G))) },
-- { exact hgnq_ne_q (h_1 ▸ (pow_period_fix (q : α) ((h : G) * (g : G)))) }
-- end
-- lemma proposition_2_1 [t2_space α] (f : G) : is_locally_moving G α → (algebraic_centralizer f).centralizer = rigid_stabilizer G (regular_support α f) := sorry
-- end finite_exponent
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
end Rubin
end Rubin