You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin.lean

1151 lines
56 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/-
Copyright (c) 2023 Laurent Bartholdi. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Laurent Bartholdi
-/
-- import Mathbin.Tactic.Default
import Mathlib.Data.Finset.Basic
import Mathlib.Data.Finset.Card
import Mathlib.Data.Fintype.Perm
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.Commutator
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.GroupTheory.Exponent
import Mathlib.GroupTheory.Perm.Basic
import Mathlib.Topology.Basic
import Mathlib.Topology.Compactness.Compact
import Mathlib.Topology.Separation
import Mathlib.Topology.Homeomorph
#align_import rubin
--@[simp]
theorem Rubin.GroupActionExt.smul_smul' {G α : Type _} [Group G] [MulAction G α] {g h : G} {x : α} :
g • h • x = (g * h) • x :=
(hMul_smul g h x).symm
#align smul_smul' Rubin.GroupActionExt.smul_smul'
--@[simp]
theorem Rubin.GroupActionExt.smul_eq_smul_inv {G α : Type _} [Group G] [MulAction G α] {g h : G}
{x y : α} : g • x = h • y ↔ (h⁻¹ * g) • x = y :=
by
constructor
· intro hyp
let this.1 := congr_arg ((· • ·) h⁻¹) hyp
rw [← mul_smul, ← mul_smul, mul_left_inv, one_smul] at this
exact this
· intro hyp
let this.1 := congr_arg ((· • ·) h) hyp
rw [← mul_smul, ← mul_assoc, mul_right_inv, one_mul] at this
exact this
#align smul_eq_smul Rubin.GroupActionExt.smul_eq_smul_inv
theorem Rubin.GroupActionExt.smul_succ {G α : Type _} (n : ) [Group G] [MulAction G α] {g : G}
{x : α} : g ^ n.succ • x = g • g ^ n • x :=
by
have := Tactic.Ring.pow_add_rev g 1 n
rw [pow_one, ← Nat.succ_eq_one_add] at this
rw [← this, smul_smul]
#align smul_succ Rubin.GroupActionExt.smul_succ
section GroupActionTactic
namespace Tactic.Interactive
/- ./././Mathport/Syntax/Translate/Tactic/Mathlib/Core.lean:38:34: unsupported: setup_tactic_parser -/
open Tactic
/- ./././Mathport/Syntax/Translate/Tactic/Mathlib/Core.lean:38:34: unsupported: setup_tactic_parser -/
open Tactic.SimpArgType Interactive Tactic.Group
/-- Auxiliary tactic for the `group_action` tactic. Calls the simplifier only. -/
unsafe def aux_group_action (locat : Loc) : tactic Unit :=
tactic.interactive.simp_core { failIfUnchanged := false } skip true
[expr ``(Rubin.GroupActionExt.smul_smul'), expr ``(Rubin.GroupActionExt.smul_eq_smul_inv),
expr ``(Rubin.GroupActionExt.smul_succ), expr ``(one_smul), expr ``(commutatorElement_def),
expr ``(mul_one), expr ``(one_mul), expr ``(one_pow), expr ``(one_zpow), expr ``(sub_self),
expr ``(add_neg_self), expr ``(neg_add_self), expr ``(neg_neg), expr ``(tsub_self),
expr ``(Int.ofNat_add), expr ``(Int.ofNat_mul), expr ``(Int.ofNat_zero),
expr ``(Int.ofNat_one), expr ``(Int.ofNat_bit0), expr ``(Int.ofNat_bit1),
expr ``(Int.mul_neg_eq_neg_mul_symm), expr ``(Int.neg_mul_eq_neg_mul_symm),
symm_expr ``(zpow_ofNat), symm_expr ``(zpow_neg_one), symm_expr ``(zpow_mul),
symm_expr ``(zpow_add_one), symm_expr ``(zpow_one_add), symm_expr ``(zpow_add),
expr ``(mul_zpow_neg_one), expr ``(zpow_zero), expr ``(mul_zpow), symm_expr ``(mul_assoc),
expr ``(Mathlib.Tactic.Group.zpow_trick), expr ``(Mathlib.Tactic.Group.zpow_trick_one),
expr ``(Mathlib.Tactic.Group.zpow_trick_one'), expr ``(zpow_trick_sub), expr ``(mul_one),
expr ``(one_mul), expr ``(one_pow), expr ``(one_zpow), expr ``(sub_self),
expr ``(add_neg_self), expr ``(neg_add_self), expr ``(neg_neg), expr ``(tsub_self),
expr ``(Int.ofNat_add), expr ``(Int.ofNat_mul), expr ``(Int.ofNat_zero),
expr ``(Int.ofNat_one), expr ``(Int.ofNat_bit0), expr ``(Int.ofNat_bit1),
expr ``(Int.mul_neg_eq_neg_mul_symm), expr ``(Int.neg_mul_eq_neg_mul_symm),
symm_expr ``(zpow_ofNat), symm_expr ``(zpow_neg_one), symm_expr ``(zpow_mul),
symm_expr ``(zpow_add_one), symm_expr ``(zpow_one_add), symm_expr ``(zpow_add),
expr ``(mul_zpow_neg_one), expr ``(zpow_zero), expr ``(mul_zpow), symm_expr ``(mul_assoc),
expr ``(Mathlib.Tactic.Group.zpow_trick), expr ``(Mathlib.Tactic.Group.zpow_trick_one),
expr ``(Mathlib.Tactic.Group.zpow_trick_one'), expr ``(zpow_trick_sub),
expr ``(Tactic.Ring.horner)]
[] locat >>
skip
#align tactic.interactive.aux_group_action tactic.interactive.aux_group_action
/-- Tactic for normalizing expressions in group actions, without assuming
commutativity, using only the group axioms without any information about
which group is manipulated.
Example:
```lean
example {G α : Type} [group G] [mul_action G α] (a b : G) (x y : α) (h : a • b • x = a • y) : b⁻¹ • y = x :=
begin
group_action at h, -- normalizes `h` which becomes `h : c = d`
rw ← h, -- the goal is now `a*d*d⁻¹ = a`
group_action -- which then normalized and closed
end
```
-/
unsafe def group_action (locat : parse location) : tactic Unit := do
aux_group_action locat
repeat (andthen (aux_group₂ locat) (aux_group_action locat))
#align tactic.interactive.group_action tactic.interactive.group_action
end Tactic.Interactive
add_tactic_doc
{ Name := "group_action"
category := DocCategory.tactic
declNames := [`tactic.interactive.group_action]
tags := ["decision procedure", "simplification"] }
end GroupActionTactic
namespace Rubin
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/
example (G α : Type _) [Group G] (a b c : G) [MulAction G α] (x : α) :
⁅a * b, c⁆ • x = (a * ⁅b, c⁆ * a⁻¹ * ⁅a, c⁆) • x := by
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]"
theorem Equiv.congr_ne {ι ι' : Type _} (e : ιι') {x y : ι} : x ≠ y → e x ≠ e y :=
by
intro x_ne_y
by_contra h
apply x_ne_y
convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply]
#align Rubin.equiv.congr_ne Rubin.Equiv.congr_ne
-- this definitely should be added to mathlib!
@[simp, to_additive]
theorem Subgroup.mk_smul {G α : Type _} [Group G] [MulAction G α] {S : Subgroup G} {g : G}
(hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a :=
rfl
#align Rubin.subgroup.mk_smul Rubin.Subgroup.mk_smul
#align Rubin.subgroup.mk_vadd Rubin.Subgroup.mk_vadd
----------------------------------------------------------------
section Rubin
variable {G α β : Type _} [Group G]
----------------------------------------------------------------
section Groups
theorem bracket_hMul {f g : G} : ⁅f, g⁆ = f * g * f⁻¹ * g⁻¹ := by tauto
#align Rubin.bracket_mul Rubin.bracket_hMul
def IsAlgebraicallyDisjoint (f g : G) :=
∀ h : G,
¬Commute f h →
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
#align Rubin.is_algebraically_disjoint Rubin.IsAlgebraicallyDisjoint
end Groups
----------------------------------------------------------------
section Actions
variable [MulAction G α]
/- warning: Rubin.orbit_bot clashes with orbit_bot -> Rubin.orbit_bot
Case conversion may be inaccurate. Consider using '#align Rubin.orbit_bot Rubin.orbit_botₓ'. -/
#print Rubin.orbit_bot /-
@[simp]
theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
MulAction.orbit (⊥ : Subgroup G) p = {p} :=
by
ext1
rw [MulAction.mem_orbit_iff]
constructor
· rintro ⟨⟨_, g_bot⟩, g_to_x⟩
rw [← g_to_x, Set.mem_singleton_iff, Rubin.GroupActionExt.subgroup_mk_smul]
exact (subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _
exact fun h => ⟨1, Eq.trans (one_smul _ p) (set.mem_singleton_iff.mp h).symm⟩
#align Rubin.orbit_bot Rubin.orbit_bot
-/
--------------------------------
section Smul''
theorem smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y :=
congr_arg ((· • ·) g) h
#align Rubin.smul_congr Rubin.smul_congr
theorem smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x :=
⟨fun h => (smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h =>
(smul_congr g h).symm.trans (smul_inv_smul g x)⟩
#align Rubin.smul_eq_iff_inv_smul_eq Rubin.smul_eq_iff_inv_smul_eq
theorem smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ) : g • x = x → g ^ n • x = x :=
by
induction n
simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff]
· intro h
nth_rw 2 [← (Rubin.GroupActionExt.smul_congr g (n_ih h)).trans h]
rw [← mul_smul, ← pow_succ]
#align Rubin.smul_pow_eq_of_smul_eq Rubin.smul_pow_eq_of_smul_eq
theorem smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ) : g • x = x → g ^ n • x = x :=
by
intro h
cases n
· let this.1 := Rubin.GroupActionExt.smul_pow_eq_of_smul_eq n h; finish
·
let this.1 :=
smul_eq_iff_inv_smul_eq.mp (Rubin.GroupActionExt.smul_pow_eq_of_smul_eq (1 + n) h);
finish
#align Rubin.smul_zpow_eq_of_smul_eq Rubin.smul_zpow_eq_of_smul_eq
def IsEquivariant (G : Type _) {β : Type _} [Group G] [MulAction G α] [MulAction G β] (f : α → β) :=
∀ g : G, ∀ x : α, f (g • x) = g • f x
#align Rubin.is_equivariant Rubin.IsEquivariant
def subsetImg' (g : G) (U : Set α) :=
{x | g⁻¹ • x ∈ U}
#align Rubin.subset_img' Rubin.subsetImg'
def subsetPreimg' (g : G) (U : Set α) :=
{x | g • x ∈ U}
#align Rubin.subset_preimg' Rubin.subsetPreimg'
def subsetImg (g : G) (U : Set α) :=
(· • ·) g '' U
#align Rubin.subset_img Rubin.subsetImg
infixl:60 "•''" => subsetImg
theorem subsetImg_def {g : G} {U : Set α} : g•''U = (· • ·) g '' U :=
rfl
#align Rubin.subset_img_def Rubin.subsetImg_def
theorem mem_smul'' {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ • x ∈ U :=
by
rw [Rubin.SmulImage.smulImage_def, Set.mem_image ((· • ·) g) U x]
constructor
· rintro ⟨y, yU, gyx⟩
let ygx : y = g⁻¹ • x := inv_smul_smul g y ▸ Rubin.GroupActionExt.smul_congr g⁻¹ gyx
exact ygx ▸ yU
· intro h
use⟨g⁻¹ • x, set.mem_preimage.mp h, smul_inv_smul g x⟩
#align Rubin.mem_smul'' Rubin.mem_smul''
theorem mem_inv_smul'' {x : α} {g : G} {U : Set α} : x ∈ g⁻¹•''U ↔ g • x ∈ U :=
by
let msi := @Rubin.SmulImage.mem_smulImage _ _ _ _ x g⁻¹ U
rw [inv_inv] at msi
exact msi
#align Rubin.mem_inv_smul'' Rubin.mem_inv_smul''
theorem hMul_smul'' (g h : G) (U : Set α) : g * h•''U = g•''(h•''U) :=
by
ext
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, ←
mul_smul, mul_inv_rev]
#align Rubin.mul_smul'' Rubin.hMul_smul''
@[simp]
theorem smul''_smul'' {g h : G} {U : Set α} : g•''(h•''U) = g * h•''U :=
(hMul_smul'' g h U).symm
#align Rubin.smul''_smul'' Rubin.smul''_smul''
@[simp]
theorem one_smul'' (U : Set α) : (1 : G)•''U = U :=
by
ext
rw [Rubin.SmulImage.mem_smulImage, inv_one, one_smul]
#align Rubin.one_smul'' Rubin.one_smul''
theorem disjoint_smul'' (g : G) {U V : Set α} : Disjoint U V → Disjoint (g•''U) (g•''V) :=
by
intro disjoint_U_V
rw [Set.disjoint_left]
rw [Set.disjoint_left] at disjoint_U_V
intro x x_in_gU
by_contra h
exact (disjoint_U_V (mem_smul''.mp x_in_gU)) (mem_smul''.mp h)
#align Rubin.disjoint_smul'' Rubin.disjoint_smul''
-- TODO: check if this is actually needed
theorem smul''_congr (g : G) {U V : Set α} : U = V → g•''U = g•''V :=
congr_arg fun W : Set α => g•''W
#align Rubin.smul''_congr Rubin.smul''_congr
theorem smul''_subset (g : G) {U V : Set α} : U ⊆ V → g•''U ⊆ g•''V :=
by
intro h1 x
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage]
exact fun h2 => h1 h2
#align Rubin.smul''_subset Rubin.smul''_subset
theorem smul''_union (g : G) {U V : Set α} : g•''U V = (g•''U) (g•''V) :=
by
ext
rw [Rubin.SmulImage.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.SmulImage.mem_smulImage,
Rubin.SmulImage.mem_smulImage]
#align Rubin.smul''_union Rubin.smul''_union
theorem smul''_inter (g : G) {U V : Set α} : g•''U ∩ V = (g•''U) ∩ (g•''V) :=
by
ext
rw [Set.mem_inter_iff, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage,
Rubin.SmulImage.mem_smulImage, Set.mem_inter_iff]
#align Rubin.smul''_inter Rubin.smul''_inter
theorem smul''_eq_inv_preimage {g : G} {U : Set α} : g•''U = (· • ·) g⁻¹ ⁻¹' U :=
by
ext
constructor
· intro h; rw [Set.mem_preimage]; exact mem_smul''.mp h
· intro h; rw [Rubin.SmulImage.mem_smulImage]; exact set.mem_preimage.mp h
#align Rubin.smul''_eq_inv_preimage Rubin.smul''_eq_inv_preimage
theorem smul''_eq_of_smul_eq {g h : G} {U : Set α} : (∀ x ∈ U, g • x = h • x) → g•''U = h•''U :=
by
intro hU
ext
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage]
constructor
· intro k; let a := congr_arg ((· • ·) h⁻¹) (hU (g⁻¹ • x) k);
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a k
· intro k; let a := congr_arg ((· • ·) g⁻¹) (hU (h⁻¹ • x) k);
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a.symm k
#align Rubin.smul''_eq_of_smul_eq Rubin.smul''_eq_of_smul_eq
end Smul''
--------------------------------
section Rubin.SmulSupport.Support
def support (α : Type _) [MulAction G α] (g : G) :=
{x : α | g • x ≠ x}
#align Rubin.support Rubin.support
theorem support_eq_not_fixedBy {g : G} : support α g = MulAction.fixedBy G α gᶜ := by tauto
#align Rubin.support_eq_not_fixed_by Rubin.support_eq_not_fixedBy
theorem mem_support {x : α} {g : G} : x ∈ support α g ↔ g • x ≠ x := by tauto
#align Rubin.mem_support Rubin.mem_support
theorem mem_not_support {x : α} {g : G} : x ∉ support α g ↔ g • x = x := by
rw [Rubin.SmulSupport.mem_support, Classical.not_not]
#align Rubin.mem_not_support Rubin.mem_not_support
theorem smul_in_support {g : G} {x : α} : x ∈ support α g → g • x ∈ support α g := fun h =>
h ∘ smul_left_cancel g
#align Rubin.smul_in_support Rubin.smul_in_support
theorem inv_smul_in_support {g : G} {x : α} : x ∈ support α g → g⁻¹ • x ∈ support α g := fun h k =>
h (smul_inv_smul g x ▸ smul_congr g k)
#align Rubin.inv_smul_in_support Rubin.inv_smul_in_support
theorem fixed_of_disjoint {g : G} {x : α} {U : Set α} :
x ∈ U → Disjoint U (support α g) → g • x = x := fun x_in_U disjoint_U_support =>
mem_not_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U)
#align Rubin.fixed_of_disjoint Rubin.fixed_of_disjoint
theorem fixes_subset_within_support (g : G) {U : Set α} : support α g ⊆ U → g•''U = U :=
by
intro support_in_U
ext x
cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with xmoved xfixed
exact
⟨fun _ => support_in_U xmoved, fun _ =>
mem_smul''.mpr (support_in_U (Rubin.SmulSupport.inv_smul_mem_support xmoved))⟩
rw [Rubin.SmulImage.mem_smulImage, smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp xfixed)]
#align Rubin.fixes_subset_within_support Rubin.fixes_subset_within_support
theorem moves_subset_within_support (g : G) (U V : Set α) : U ⊆ V → support α g ⊆ V → g•''U ⊆ V :=
fun U_in_V support_in_V => fixes_subset_within_support g support_in_V ▸ smul''_subset g U_in_V
#align Rubin.moves_subset_within_support Rubin.moves_subset_within_support
theorem support_hMul (g h : G) (α : Type _) [MulAction G α] :
support α (g * h) ⊆ support α g support α h :=
by
intro x x_in_support
by_contra h_support
let this.1 := not_or_distrib.mp h_support
exact
x_in_support
((mul_smul g h x).trans
((congr_arg ((· • ·) g) (mem_not_support.mp this.2)).trans <| mem_not_support.mp this.1))
#align Rubin.support_mul Rubin.support_hMul
theorem support_conjugate (α : Type _) [MulAction G α] (g h : G) :
support α (h * g * h⁻¹) = h•''support α g :=
by
ext
rw [Rubin.SmulSupport.mem_support, Rubin.SmulImage.mem_smulImage, Rubin.SmulSupport.mem_support,
mul_smul, mul_smul]
constructor
· intro h1; by_contra h2; exact h1 ((congr_arg ((· • ·) h) h2).trans (smul_inv_smul _ _))
· intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg ((· • ·) h⁻¹) h2)
#align Rubin.support_conjugate Rubin.support_conjugate
theorem support_inv (α : Type _) [MulAction G α] (g : G) : support α g⁻¹ = support α g :=
by
ext
rw [Rubin.SmulSupport.mem_support, Rubin.SmulSupport.mem_support]
constructor
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mp h2)
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mpr h2)
#align Rubin.support_inv Rubin.support_inv
theorem support_pow (α : Type _) [MulAction G α] (g : G) (j : ) :
support α (g ^ j) ⊆ support α g := by
intro x xmoved
by_contra xfixed
rw [Rubin.SmulSupport.mem_support] at xmoved
induction j
· apply xmoved; rw [pow_zero g, one_smul]
· apply xmoved
let j_ih := (congr_arg ((· • ·) g) (not_not.mp j_ih)).trans (mem_not_support.mp xfixed)
rw [← mul_smul, ← pow_succ] at j_ih
exact j_ih
#align Rubin.support_pow Rubin.support_pow
theorem support_comm (α : Type _) [MulAction G α] (g h : G) :
support α ⁅g, h⁆ ⊆ support α h (g•''support α h) :=
by
intro x x_in_support
by_contra all_fixed
rw [Set.mem_union] at all_fixed
cases' @or_not (h • x = x) with xfixed xmoved
· rw [Rubin.SmulSupport.mem_support, Rubin.bracket_mul, mul_smul,
smul_eq_iff_inv_smul_eq.mp xfixed, ← Rubin.SmulSupport.mem_support] at x_in_support
exact
((Rubin.SmulSupport.support_conjugate α h g).symm ▸ (not_or_distrib.mp all_fixed).2)
x_in_support
· exact all_fixed (Or.inl xmoved)
#align Rubin.support_comm Rubin.support_comm
theorem disjoint_support_comm (f g : G) {U : Set α} :
support α f ⊆ U → Disjoint U (g•''U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x :=
by
intro support_in_U disjoint_U x x_in_U
have support_conj : Rubin.SmulSupport.Support α (g * f⁻¹ * g⁻¹) ⊆ g•''U :=
((Rubin.SmulSupport.support_conjugate α f⁻¹ g).trans
(Rubin.SmulImage.smulImage_congr g (Rubin.SmulSupport.support_inv α f))).symm ▸
Rubin.SmulImage.smulImage_subset g support_in_U
have goal :=
(congr_arg ((· • ·) f)
(Rubin.SmulSupport.fixed_of_disjoint x_in_U
(Set.disjoint_of_subset_right support_conj disjoint_U))).symm
rw [← mul_smul, ← mul_assoc, ← mul_assoc] at goal
exact goal.symm
#align Rubin.disjoint_support_comm Rubin.disjoint_support_comm
end Rubin.SmulSupport.Support
-- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup
def rigidStabilizer' (G : Type _) [Group G] [MulAction G α] (U : Set α) : Set G :=
{g : G | ∀ x : α, g • x = x x ∈ U}
#align Rubin.rigid_stabilizer' Rubin.rigidStabilizer'
/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » U) -/
def rigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgroup G
where
carrier := {g : G | ∀ (x) (_ : x ∉ U), g • x = x}
hMul_mem' a b ha hb x x_notin_U := by rw [mul_smul a b x, hb x x_notin_U, ha x x_notin_U]
inv_mem' _ hg x x_notin_U := smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U)
one_mem' x _ := one_smul G x
#align Rubin.rigid_stabilizer Rubin.rigidStabilizer
theorem rist_supported_in_set {g : G} {U : Set α} : g ∈ rigidStabilizer G U → support α g ⊆ U :=
fun h x x_in_support => by_contradiction (x_in_support ∘ h x)
#align Rubin.rist_supported_in_set Rubin.rist_supported_in_set
theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) :
(rigidStabilizer G V : Set G) ⊆ (rigidStabilizer G U : Set G) :=
by
intro g g_in_ristV x x_notin_U
have x_notin_V : x ∉ V := by intro x_in_V; exact x_notin_U (V_ss_U x_in_V)
exact g_in_ristV x x_notin_V
#align Rubin.rist_ss_rist Rubin.rist_ss_rist
end Actions
----------------------------------------------------------------
section TopologicalActions
variable [TopologicalSpace α] [TopologicalSpace β]
class ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends MulAction G α where
Continuous : ∀ g : G, Continuous (@SMul.smul G α _ g)
#align Rubin.continuous_mul_action Rubin.ContinuousMulAction
structure EquivariantHomeomorph (G α β : Type _) [Group G] [TopologicalSpace α] [TopologicalSpace β]
[MulAction G α] [MulAction G β] extends Homeomorph α β where
equivariant : IsEquivariant G to_fun
#align Rubin.equivariant_homeomorph Rubin.EquivariantHomeomorph
theorem equivariantFun [MulAction G α] [MulAction G β] (h : EquivariantHomeomorph G α β) :
IsEquivariant G h.toFun :=
h.equivariant
#align Rubin.equivariant_fun Rubin.equivariantFun
theorem equivariantInv [MulAction G α] [MulAction G β] (h : EquivariantHomeomorph G α β) :
IsEquivariant G h.invFun := by
intro g x
let e := congr_arg h.inv_fun (h.equivariant g (h.inv_fun x))
rw [h.left_inv _, h.right_inv _] at e
exact e.symm
#align Rubin.equivariant_inv Rubin.equivariantInv
variable [ContinuousMulAction G α]
theorem img_open_open (g : G) (U : Set α) (h : IsOpen U) [ContinuousMulAction G α] :
IsOpen (g•''U) := by
rw [Rubin.SmulImage.smulImage_eq_inv_preimage]
exact Continuous.isOpen_preimage (continuous_mul_action.continuous g⁻¹) U h
#align Rubin.img_open_open Rubin.img_open_open
theorem support_open (g : G) [TopologicalSpace α] [T2Space α] [ContinuousMulAction G α] :
IsOpen (support α g) := by
apply is_open_iff_forall_mem_open.mpr
intro x xmoved
rcases T2Space.t2 (g • x) x xmoved with ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩
exact
⟨V ∩ (g⁻¹•''U), fun y yW =>
@Disjoint.ne_of_mem α U V disjoint_U_V (g • y) y
(mem_inv_smul''.mp (Set.mem_of_mem_inter_right yW)) (Set.mem_of_mem_inter_left yW),
IsOpen.inter open_V (Rubin.Topological.img_open_open g⁻¹ U open_U),
⟨x_in_V, mem_inv_smul''.mpr gx_in_U⟩⟩
#align Rubin.support_open Rubin.support_open
end TopologicalActions
----------------------------------------------------------------
section FaithfulActions
variable [MulAction G α] [FaithfulSMul G α]
theorem faithful_moves_point {g : G} (h2 : ∀ x : α, g • x = x) : g = 1 :=
haveI h3 : ∀ x : α, g • x = (1 : G) • x := fun x => (h2 x).symm ▸ (one_smul G x).symm
eq_of_smul_eq_smul h3
#align Rubin.faithful_moves_point Rubin.faithful_moves_point
theorem faithful_moves_point' {g : G} (α : Type _) [MulAction G α] [FaithfulSMul G α] :
g ≠ 1 → ∃ x : α, g • x ≠ x := fun k =>
by_contradiction fun h => k <| faithful_moves_point <| Classical.not_exists_not.mp h
#align Rubin.faithful_moves_point' Rubin.faithful_moves_point'
theorem faithful_rist_moves_point {g : G} {U : Set α} :
g ∈ rigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x :=
by
intro g_rigid g_ne_one
rcases Rubin.faithful_moves_point'₁ α g_ne_one with ⟨x, xmoved⟩
exact ⟨x, rist_supported_in_set g_rigid xmoved, xmoved⟩
#align Rubin.faithful_rist_moves_point Rubin.faithful_rist_moves_point
theorem ne_one_support_nempty {g : G} : g ≠ 1 → (support α g).Nonempty :=
by
intro h1
cases' Rubin.faithful_moves_point'₁ α h1 with x _
use x
#align Rubin.ne_one_support_nempty Rubin.ne_one_support_nempty
-- FIXME: somehow clashes with another definition
theorem disjoint_commute {f g : G} : Disjoint (support α f) (support α g) → Commute f g :=
by
intro hdisjoint
rw [← commutatorElement_eq_one_iff_commute]
apply @Rubin.faithful_moves_point₁ _ α
intro x
rw [Rubin.bracket_mul, mul_smul, mul_smul, mul_smul]
cases' @or_not (x ∈ Rubin.SmulSupport.Support α f) with hfmoved hffixed
·
rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp (set.disjoint_left.mp hdisjoint hfmoved)),
mem_not_support.mp
(set.disjoint_left.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hfmoved)),
smul_inv_smul]
cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with hgmoved hgfixed
·
rw [smul_eq_iff_inv_smul_eq.mp
(mem_not_support.mp <|
set.disjoint_right.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hgmoved)),
smul_inv_smul, mem_not_support.mp hffixed]
·
rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hgfixed),
smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hffixed), mem_not_support.mp hgfixed,
mem_not_support.mp hffixed]
#align Rubin.disjoint_commute Rubin.disjoint_commute
end FaithfulActions
----------------------------------------------------------------
section RubinActions
variable [TopologicalSpace α] [TopologicalSpace β]
def HasNoIsolatedPoints (α : Type _) [TopologicalSpace α] :=
∀ x : α, (nhdsWithin x ({x}ᶜ)).ne_bot
#align Rubin.has_no_isolated_points Rubin.HasNoIsolatedPoints
def IsLocallyDense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
∀ U : Set α, ∀ p ∈ U, p ∈ interior (closure (MulAction.orbit (rigidStabilizer G U) p))
#align Rubin.is_locally_dense Rubin.IsLocallyDense
structure RubinActionCat (G α : Type _) extends Group G, TopologicalSpace α, MulAction G α,
FaithfulSMul G α where
locally_compact : LocallyCompactSpace α
hausdorff : T2Space α
no_isolated_points : HasNoIsolatedPoints α
locallyDense : IsLocallyDense G α
#align Rubin.rubin_action Rubin.RubinActionCat
end RubinActions
----------------------------------------------------------------
section Rubin.Period.period
variable [MulAction G α]
noncomputable def period (p : α) (g : G) : :=
sInf {n : | n > 0 ∧ g ^ n • p = p}
#align Rubin.period Rubin.period
theorem period_le_fix {p : α} {g : G} {m : } (m_pos : m > 0) (gmp_eq_p : g ^ m • p = p) :
0 < period p g ∧ period p g ≤ m := by
constructor
· by_contra h'; have period_zero : Rubin.Period.period p g = 0; linarith;
rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, h_1⟩; linarith;
exact set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩
exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩
#align Rubin.period_le_fix Rubin.period_le_fix
theorem notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0) (period_pos : period p g > 0)
(pmoves : ∀ i : , 0 < i → i < n → g ^ i • p ≠ p) : n ≤ period p g :=
by
by_contra period_le
exact
(pmoves (Rubin.Period.period p g) period_pos (not_le.mp period_le))
(Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2
#align Rubin.notfix_le_period Rubin.notfix_le_period
theorem notfix_le_period' {p : α} {g : G} {n : } (n_pos : n > 0) (period_pos : period p g > 0)
(pmoves : ∀ i : Fin n, 0 < (i : ) → g ^ (i : ) • p ≠ p) : n ≤ period p g :=
notfix_le_period n_pos period_pos fun (i : ) (i_pos : 0 < i) (i_lt_n : i < n) =>
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
#align Rubin.notfix_le_period' Rubin.notfix_le_period'
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/
theorem period_neutral_eq_one (p : α) : period p (1 : G) = 1 :=
by
have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 :=
Rubin.Period.period_le_fix (by norm_num : 1 > 0)
(by
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]" :
(1 : G) ^ 1 • p = p)
linarith
#align Rubin.period_neutral_eq_one Rubin.period_neutral_eq_one
def periods (U : Set α) (H : Subgroup G) : Set :=
{n : | ∃ (p : U) (g : H), period (p : α) (g : G) = n}
#align Rubin.periods Rubin.periods
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/
-- TODO: split into multiple lemmas
theorem period_lemma {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
(periods U H).Nonempty ∧
BddAbove (periods U H) ∧ ∃ (m : ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p :=
by
rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩
have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by intro p g; rw [gm_eq_one g];
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]"
have periods_nonempty : (Rubin.Period.periods U H).Nonempty := by use 1; let p := U_nonempty.some;
use p; exact Set.Nonempty.some_mem U_nonempty; use 1; exact Rubin.Period.period_neutral_eq_one p
have periods_bounded : BddAbove (Rubin.Period.periods U H) := by use m; intro some_period hperiod;
rcases hperiod with ⟨p, g, hperiod⟩; rw [← hperiod];
exact (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).2
exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
#align Rubin.period_lemma Rubin.period_lemma
theorem period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∃ (p : U) (g : H) (n : ), n > 0 ∧ period (p : α) (g : G) = n ∧ n = sSup (periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
rcases Nat.sSup_mem periods_nonempty periods_bounded with ⟨p, g, hperiod⟩
exact
⟨p, g, Sup (Rubin.Period.periods U H),
hperiod ▸ (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1, hperiod, rfl⟩
#align Rubin.period_from_exponent Rubin.period_from_exponent
theorem zero_lt_period_le_sSup_periods {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : U) (g : H), 0 < period (p : α) (g : G) ∧ period (p : α) (g : G) ≤ sSup (periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
intro p g
have period_in_periods : Rubin.Period.period (p : α) (g : G) ∈ Rubin.Period.periods U H := by
use p; use g
exact
⟨(Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1,
le_csSup periods_bounded period_in_periods⟩
#align Rubin.zero_lt_period_le_Sup_periods Rubin.zero_lt_period_le_sSup_periods
theorem pow_period_fix (p : α) (g : G) : g ^ period p g • p = p :=
by
cases eq_zero_or_neZero (Rubin.Period.period p g)
· rw [h]; finish
·
exact
(Nat.sInf_mem
(Nat.nonempty_of_pos_sInf
(Nat.pos_of_ne_zero (@NeZero.ne _ _ (Rubin.Period.period p g) h)))).2
#align Rubin.pow_period_fix Rubin.pow_period_fix
end Rubin.Period.period
----------------------------------------------------------------
section AlgebraicDisjointness
variable [TopologicalSpace α] [ContinuousMulAction G α] [FaithfulSMul G α]
def IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
∀ U : Set α, IsOpen U → Set.Nonempty U → rigidStabilizer G U ≠ ⊥
#align Rubin.is_locally_moving Rubin.IsLocallyMoving
-- lemma dense_locally_moving : t2_space α ∧ has_no_isolated_points α ∧ is_locally_dense G α → is_locally_moving G α := begin
-- rintros ⟨t2α,nipα,ildGα⟩ U ioU neU,
-- by_contra,
-- have some_in_U := ildGα U neU.some neU.some_mem,
-- rw [h,orbit_bot G neU.some,@closure_singleton α _ (@t2_space.t1_space α _ t2α) neU.some,@interior_singleton α _ neU.some (nipα neU.some)] at some_in_U,
-- tauto
-- end
-- lemma disjoint_nbhd {g : G} {x : α} [t2_space α] : g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ disjoint U (g •'' U) := begin
-- intro xmoved,
-- rcases t2_space.t2 (g • x) x xmoved with ⟨V,W,open_V,open_W,gx_in_V,x_in_W,disjoint_V_W⟩,
-- let U := (g⁻¹ •'' V) ∩ W,
-- use U,
-- split,
-- exact is_open.inter (img_open_open g⁻¹ V open_V) open_W,
-- split,
-- exact ⟨mem_inv_smul''.mpr gx_in_V,x_in_W⟩,
-- exact set.disjoint_of_subset
-- (set.inter_subset_right (g⁻¹•''V) W)
-- (λ y hy, smul_inv_smul g y ▸ mem_inv_smul''.mp (set.mem_of_mem_inter_left (mem_smul''.mp hy)) : g•''U ⊆ V)
-- disjoint_V_W.symm
-- end
-- lemma disjoint_nbhd_in {g : G} {x : α} [t2_space α] {V : set α} : is_open V → x ∈ V → g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ U ⊆ V ∧ disjoint U (g •'' U) := begin
-- intros open_V x_in_V xmoved,
-- rcases disjoint_nbhd xmoved with ⟨W,open_W,x_in_W,disjoint_W⟩,
-- let U := W ∩ V,
-- use U,
-- split,
-- exact is_open.inter open_W open_V,
-- split,
-- exact ⟨x_in_W,x_in_V⟩,
-- split,
-- exact set.inter_subset_right W V,
-- exact set.disjoint_of_subset
-- (set.inter_subset_left W V)
-- ((@smul''_inter _ _ _ _ g W V).symm ▸ set.inter_subset_left (g•''W) (g•''V) : g•''U ⊆ g•''W)
-- disjoint_W
-- end
-- lemma rewrite_Union (f : fin 2 × fin 2 → set α) : ((i : fin 2 × fin 2), f i) = (f (0,0) f (0,1)) (f (1,0) f (1,1)) := begin
-- ext,
-- simp only [set.mem_Union, set.mem_union],
-- split,
-- { simp only [forall_exists_index],
-- intro i,
-- fin_cases i; simp {contextual := tt}, },
-- { rintro ((h|h)|(h|h)); exact ⟨_, h⟩, },
-- end
-- lemma proposition_1_1_1 (f g : G) (locally_moving : is_locally_moving G α) [t2_space α] : disjoint (support α f) (support α g) → is_algebraically_disjoint f g := begin
-- intros disjoint_f_g h hfh,
-- let support_f := support α f,
-- -- h is not the identity on support α f
-- cases set.not_disjoint_iff.mp (mt (@disjoint_commute G α _ _ _ _ _) hfh) with x hx,
-- let x_in_support_f := hx.1,
-- let hx_ne_x := mem_support.mp hx.2,
-- -- so since α is Hausdoff there is V nonempty ⊆ support α f with h•''V disjoint from V
-- rcases disjoint_nbhd_in (support_open f) x_in_support_f hx_ne_x with ⟨V,open_V,x_in_V,V_in_support,disjoint_img_V⟩,
-- let ristV_ne_bot := locally_moving V open_V (set.nonempty_of_mem x_in_V),
-- -- let f₂ be a nontrivial element of rigid_stabilizer G V
-- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨f₂,f₂_in_ristV,f₂_ne_one⟩,
-- -- again since α is Hausdorff there is W nonempty ⊆ V with f₂•''W disjoint from W
-- rcases faithful_moves_point' α f₂_ne_one with ⟨y,ymoved⟩,
-- let y_in_V : y ∈ V := (rist_supported_in_set f₂_in_ristV) (mem_support.mpr ymoved),
-- rcases disjoint_nbhd_in open_V y_in_V ymoved with ⟨W,open_W,y_in_W,W_in_V,disjoint_img_W⟩,
-- -- let f₁ be a nontrivial element of rigid_stabilizer G W
-- let ristW_ne_bot := locally_moving W open_W (set.nonempty_of_mem y_in_W),
-- rcases (or_iff_right ristW_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨f₁,f₁_in_ristW,f₁_ne_one⟩,
-- use f₁, use f₂,
-- -- note that f₁,f₂ commute with g since their support is in support α f
-- split,
-- exact disjoint_commute (set.disjoint_of_subset_left (set.subset.trans (set.subset.trans (rist_supported_in_set f₁_in_ristW) W_in_V) V_in_support) disjoint_f_g),
-- split,
-- exact disjoint_commute (set.disjoint_of_subset_left (set.subset.trans (rist_supported_in_set f₂_in_ristV) V_in_support) disjoint_f_g),
-- -- we claim that [f₁,[f₂,h]] is a nontrivial element of centralizer G g
-- let k := ⁅f₂,h⁆,
-- -- first, h*f₂⁻¹*h⁻¹ is supported on h V, so k := [f₂,h] agrees with f₂ on V
-- have h2 : ∀z ∈ W, f₂•z = k•z := λ z z_in_W,
-- (disjoint_support_comm f₂ h (rist_supported_in_set f₂_in_ristV) disjoint_img_V z (W_in_V z_in_W)).symm,
-- -- then k*f₁⁻¹*k⁻¹ is supported on k W = f₂ W, so [f₁,k] is supported on W f₂ W ⊆ V ⊆ support f, so commutes with g.
-- have h3 : support α ⁅f₁,k⁆ ⊆ support α f := begin
-- let := (support_comm α k f₁).trans (set.union_subset_union (rist_supported_in_set f₁_in_ristW) (smul''_subset k $ rist_supported_in_set f₁_in_ristW)),
-- rw [← commutator_element_inv,support_inv,(smul''_eq_of_smul_eq h2).symm] at this,
-- exact (this.trans $ (set.union_subset_union W_in_V (moves_subset_within_support f₂ W V W_in_V $ rist_supported_in_set f₂_in_ristV)).trans $ eq.subset V.union_self).trans V_in_support
-- end,
-- split,
-- exact disjoint_commute (set.disjoint_of_subset_left h3 disjoint_f_g),
-- -- finally, [f₁,k] agrees with f₁ on W, so is not the identity.
-- have h4 : ∀z ∈ W, ⁅f₁,k⁆•z = f₁•z :=
-- disjoint_support_comm f₁ k (rist_supported_in_set f₁_in_ristW) (smul''_eq_of_smul_eq h2 ▸ disjoint_img_W),
-- rcases faithful_rist_moves_point f₁_in_ristW f₁_ne_one with ⟨z,z_in_W,z_moved⟩,
-- by_contra h5,
-- exact ((h4 z z_in_W).symm ▸ z_moved : ⁅f₁, k⁆ • z ≠ z) ((congr_arg (λg : G, g•z) h5).trans (one_smul G z)),
-- end
-- @[simp] lemma smul''_mul {g h : G} {U : set α} : g •'' (h •'' U) = (g*h) •'' U :=
-- (mul_smul'' g h U).symm
-- lemma disjoint_nbhd_fin {ι : Type*} [fintype ι] {f : ι → G} {x : α} [t2_space α] : (λi : ι, f i • x).injective → ∃U : set α, is_open U ∧ x ∈ U ∧ (∀i j : ι, i ≠ j → disjoint (f i •'' U) (f j •'' U)) := begin
-- intro f_injective,
-- let disjoint_hyp := λi j (i_ne_j : i≠j), let x_moved : ((f j)⁻¹ * f i) • x ≠ x := begin
-- by_contra,
-- let := smul_congr (f j) h,
-- rw [mul_smul, ← mul_smul,mul_right_inv,one_smul] at this,
-- from i_ne_j (f_injective this),
-- end in disjoint_nbhd x_moved,
-- let ι2 := { p : ι×ι // p.1 ≠ p.2 },
-- let U := ⋂(p : ι2), (disjoint_hyp p.1.1 p.1.2 p.2).some,
-- use U,
-- split,
-- exact is_open_Inter (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.1),
-- split,
-- exact set.mem_Inter.mpr (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.2.1),
-- intros i j i_ne_j,
-- let U_inc := set.Inter_subset (λ p : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some) ⟨⟨i,j⟩,i_ne_j⟩,
-- let := (disjoint_smul'' (f j) (set.disjoint_of_subset U_inc (smul''_subset ((f j)⁻¹ * (f i)) U_inc) (disjoint_hyp i j i_ne_j).some_spec.2.2)).symm,
-- simp only [subtype.val_eq_coe, smul''_mul, mul_inv_cancel_left] at this,
-- from this
-- end
-- lemma moves_inj {g : G} {x : α} {n : } (period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- intros i j same_img,
-- by_contra i_ne_j,
-- let same_img' := congr_arg ((•) (g ^ (-(j : )))) same_img,
-- simp only [inv_smul_smul] at same_img',
-- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img',
-- simp only [add_left_neg, zpow_zero, one_smul] at same_img',
-- let ij := |(i:) - (j:)|,
-- rw ← sub_eq_add_neg at same_img',
-- have xfixed : g^ij • x = x := begin
-- cases abs_cases ((i:) - (j:)),
-- { rw ← h.1 at same_img', exact same_img' },
-- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' }
-- end,
-- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)),
-- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)),
-- rw zero_sub at neg_le,
-- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j),
-- rw sub_zero at le_pos,
-- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩,
-- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed,
-- end
-- lemma int_to_nat (k : ) (k_pos : k ≥ 1) : k = k.nat_abs := begin
-- cases (int.nat_abs_eq k),
-- { exact h },
-- { have : -(k.nat_abs : ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg,
-- rw ← h at this, by_contra, linarith }
-- end
-- lemma moves_inj_N {g : G} {x : α} {n : } (period_ge_n' : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x,
-- { intros k one_le_k k_lt_n,
-- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)),
-- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)),
-- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n,
-- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this,
-- exact this },
-- have := moves_inj period_ge_n,
-- finish
-- end
-- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:) • x) := begin
-- apply moves_inj,
-- intros k k_ge_1 k_lt_5,
-- by_contra xfixed,
-- have k_div_12 : k * (12 / k) = 12 := begin
-- interval_cases using k_ge_1 k_lt_5; norm_num
-- end,
-- have veryfixed : g^12 • x = x := begin
-- let := smul_zpow_eq_of_smul_eq (12/k) xfixed,
-- rw [← zpow_mul,k_div_12] at this,
-- norm_cast at this
-- end,
-- exact xmoves veryfixed
-- end
-- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin
-- intros locally_moving alg_disjoint,
-- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty
-- by_contra not_disjoint,
-- let U := support α f ∩ support α (g^12),
-- have U_nonempty : U.nonempty := set.not_disjoint_iff_nonempty_inter.mp not_disjoint,
-- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint
-- let x := U_nonempty.some,
-- have five_points : function.injective (λi : fin 5, g^(i:) • x) := moves_1234_of_moves_12 (mem_support.mp $ (set.inter_subset_right _ _) U_nonempty.some_mem),
-- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩,
-- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩,
-- simp only at disjoint_img_V₁,
-- let V := V₀ ∩ V₁,
-- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V
-- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩),
-- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- have comm_non_trivial : ¬commute f h := begin
-- by_contra comm_trivial,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩,
-- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (set.disjoint_of_subset (set.inter_subset_left V₀ V₁) (smul''_subset f (set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V,
-- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm,
-- exact z_moved act_comm.symm,
-- end,
-- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g)
-- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩,
-- let h' := ⁅f₁,⁅f₂,h⁆⁆,
-- -- now observe that supp([f₂, h]) ⊆ V f₂(V), and by the same reasoning supp(h')⊆Vf₁(V)f₂(V)f₁f₂(V)
-- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V (f₂ •'' V) := (support_comm α f₂ h).trans (set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV),
-- have support_h' : support α h' ⊆ (i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin
-- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)),
-- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this,
-- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V),
-- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u,
-- exact rw_u.symm ▸ this,
-- end,
-- -- since h' is nontrivial, it has at least one point p in its support
-- cases faithful_moves_point' α h'_non_trivial with p p_moves,
-- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h')
-- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin
-- intro i,
-- rw mem_support,
-- by_contra p_fixed,
-- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed,
-- exact p_moves p_fixed,
-- end,
-- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂}
-- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial,
-- let choice := λi : fin 5, (set.mem_Union.mp $ support_h' $ gi_in_support i).some,
-- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩,
-- clear h_1_w h_1_h_h_w pigeonhole,
-- let k := f₁^(choice i).1.val*f₂^(choice i).2.val,
-- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice,
-- rw ← same_choice },
-- have g_i : g^i.val • p ∈ k •'' V := (set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec,
-- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec,
-- -- but since g^(ji)(V) is disjoint from V and k commutes with g, we know that g^(ji)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V).
-- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin
-- let := (disjoint_smul'' (g^(-(i.val+j.val : ))) (disjoint_img_V₁ i j i_ne_j)).symm,
-- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this,
-- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this,
-- from set.disjoint_of_subset (smul''_subset _ (set.inter_subset_right V₀ V₁)) (smul''_subset _ (set.inter_subset_right V₀ V₁)) this
-- end,
-- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val),
-- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin
-- let this := disjoint_smul'' k g_disjoint,
-- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val,
-- ← (k_commutes.symm.inv_left.pow_left i.val).eq,
-- ← (k_commutes.symm.inv_left.pow_left j.val).eq,
-- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this,
-- from this
-- end,
-- exact set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j)
-- end
-- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin
-- intro alg_disjoint,
-- by_contra non_commute,
-- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩,
-- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d,
-- tauto
-- end
-- section remark_1_3
-- def G := equiv.perm (fin 2)
-- def σ := equiv.swap (0 : fin 2) (1 : fin 2)
-- example : is_algebraically_disjoint σ σ := begin
-- intro h,
-- fin_cases h,
-- intro hyp1,
-- exfalso,
-- swap, intro hyp2, exfalso,
-- -- is commute decidable? cc,
-- sorry -- dec_trivial
-- sorry -- second sorry needed
-- end
-- end remark_1_3
end AlgebraicDisjointness
----------------------------------------------------------------
section Rubin.RegularSupport.RegularSupport
variable [TopologicalSpace α] [ContinuousMulAction G α]
def interiorClosure (U : Set α) :=
interior (closure U)
#align Rubin.interior_closure Rubin.interiorClosure
theorem isOpen_interiorClosure (U : Set α) : IsOpen (interiorClosure U) :=
isOpen_interior
#align Rubin.is_open_interior_closure Rubin.isOpen_interiorClosure
theorem interiorClosure_mono {U V : Set α} : U ⊆ V → interiorClosure U ⊆ interiorClosure V :=
interior_mono ∘ closure_mono
#align Rubin.interior_closure_mono Rubin.interiorClosure_mono
def Set.IsRegularOpen (U : Set α) :=
interiorClosure U = U
#align Rubin.set.is_regular_open Rubin.Set.IsRegularOpen
theorem Set.is_regular_def (U : Set α) : U.IsRegularOpen ↔ interiorClosure U = U := by rfl
#align Rubin.set.is_regular_def Rubin.Set.is_regular_def
theorem IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆ interior (closure U) :=
by
intro U_open x x_in_U
apply interior_mono subset_closure
rw [U_open.interior_eq]
exact x_in_U
#align Rubin.is_open.in_closure Rubin.IsOpen.in_closure
theorem IsOpen.interiorClosure_subset {U : Set α} : IsOpen U → U ⊆ interiorClosure U := fun h =>
(subset_interior_iff_isOpen.mpr h).trans (interior_mono subset_closure)
#align Rubin.is_open.interior_closure_subset Rubin.IsOpen.interiorClosure_subset
theorem regular_interiorClosure (U : Set α) : (interiorClosure U).IsRegularOpen :=
by
rw [Rubin.RegularSupport.Set.is_regular_def]
apply Set.Subset.antisymm
exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure))
exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure)
#align Rubin.regular_interior_closure Rubin.regular_interiorClosure
def regularSupport (α : Type _) [TopologicalSpace α] [MulAction G α] (g : G) :=
interiorClosure (support α g)
#align Rubin.regular_support Rubin.regularSupport
theorem regular_regularSupport {g : G} : (regularSupport α g).IsRegularOpen :=
regular_interiorClosure _
#align Rubin.regular_regular_support Rubin.regular_regularSupport
theorem support_in_regularSupport [T2Space α] (g : G) : support α g ⊆ regularSupport α g :=
IsOpen.interiorClosure_subset (support_open g)
#align Rubin.support_in_regular_support Rubin.support_in_regularSupport
theorem mem_regularSupport (g : G) (U : Set α) :
U.IsRegularOpen → g ∈ rigidStabilizer G U → regularSupport α g ⊆ U := fun U_ro g_moves =>
(Set.is_regular_def _).mp U_ro ▸ interiorClosure_mono (rist_supported_in_set g_moves)
#align Rubin.mem_regular_support Rubin.mem_regularSupport
-- FIXME: Weird naming?
def algebraicCentralizer (f : G) : Set G :=
{h | ∃ g, h = g ^ 12 ∧ IsAlgebraicallyDisjoint f g}
#align Rubin.algebraic_centralizer Rubin.algebraicCentralizer
end Rubin.RegularSupport.RegularSupport
-- ----------------------------------------------------------------
-- section finite_exponent
-- lemma coe_nat_fin {n i : } (h : i < n) : ∃ (i' : fin n), i = i' := ⟨ ⟨ i, h ⟩, rfl ⟩
-- variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α]
-- lemma distinct_images_from_disjoint {g : G} {V : set α} {n : }
-- (n_pos : 0 < n)
-- (h_disj : ∀ (i j : fin n) (i_ne_j : i ≠ j), disjoint (g ^ (i : ) •'' V) (g ^ (j : ) •'' V)) :
-- ∀ (q : α) (hq : q ∈ V) (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ∉ V :=
-- begin
-- intros q hq i i_pos hcontra,
-- have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : fin n), { intro, finish },
-- have hcontra' : g ^ (i : ) • (q : α) ∈ g ^ (i : ) •'' V, exact ⟨ q, hq, rfl ⟩,
-- have giq_notin_V := set.disjoint_left.mp (h_disj i (⟨ 0, n_pos ⟩ : fin n) i_ne_zero) hcontra',
-- exact ((by finish : g ^ 0•''V = V) ▸ giq_notin_V) hcontra
-- end
-- lemma moves_inj_period {g : G} {p : α} {n : } (period_eq_n : period p g = n) : function.injective (λ (i : fin n), g ^ (i : ) • p) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • p ≠ p,
-- { intros k one_le_k k_lt_n gkp_eq_p,
-- have := period_le_fix (nat.succ_le_iff.mp one_le_k) gkp_eq_p,
-- rw period_eq_n at this,
-- linarith },
-- exact moves_inj_N period_ge_n
-- end
-- lemma lemma_2_2 {α : Type u_2} [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] [t2_space α]
-- (U : set α) (U_open : is_open U) (locally_moving : is_locally_moving G α) :
-- U.nonempty → monoid.exponent (rigid_stabilizer G U) = 0 :=
-- begin
-- intro U_nonempty,
-- by_contra exp_ne_zero,
-- rcases (period_from_exponent U U_nonempty exp_ne_zero) with ⟨ p, g, n, n_pos, hpgn, n_eq_Sup ⟩,
-- rcases disjoint_nbhd_fin (moves_inj_period hpgn) with ⟨ V', V'_open, p_in_V', disj' ⟩,
-- dsimp at disj',
-- let V := U ∩ V',
-- have V_ss_U : V ⊆ U := set.inter_subset_left U V',
-- have V'_ss_V : V ⊆ V' := set.inter_subset_right U V',
-- have V_open : is_open V := is_open.inter U_open V'_open,
-- have p_in_V : (p : α) ∈ V := ⟨ subtype.mem p, p_in_V' ⟩,
-- have disj : ∀ (i j : fin n), ¬ i = j → disjoint (↑g ^ ↑i•''V) (↑g ^ ↑j•''V),
-- { intros i j i_ne_j W W_ss_giV W_ss_gjV,
-- exact disj' i j i_ne_j
-- (set.subset.trans W_ss_giV (smul''_subset (↑g ^ ↑i) V'_ss_V))
-- (set.subset.trans W_ss_gjV (smul''_subset (↑g ^ ↑j) V'_ss_V)) },
-- have ristV_ne_bot := locally_moving V V_open (set.nonempty_of_mem p_in_V),
-- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨ q, q_in_V, hq_ne_q ⟩,
-- have hg_in_ristU : (h : G) * (g : G) ∈ rigid_stabilizer G U := (rigid_stabilizer G U).mul_mem' (rist_ss_rist V_ss_U h_in_ristV) (subtype.mem g),
-- have giq_notin_V : ∀ (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ∉ V := distinct_images_from_disjoint n_pos disj q q_in_V,
-- have giq_ne_q : ∀ (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ≠ (q : α),
-- { intros i i_pos giq_eq_q, exact (giq_eq_q ▸ (giq_notin_V i i_pos)) q_in_V, },
-- have q_in_U : q ∈ U, { have : q ∈ U ∩ V' := q_in_V, exact this.1 },
-- -- We have (hg)^i q = g^i q for all 0 < i < n
-- have pow_hgq_eq_pow_gq : ∀ (i : fin n), (i : ) < n → (h * g) ^ (i : ) • q = (g : G) ^ (i : ) • q,
-- { intros i, induction (i : ) with i',
-- { intro, repeat {rw pow_zero} },
-- { intro succ_i'_lt_n,
-- rw [smul_succ, ih (nat.lt_of_succ_lt succ_i'_lt_n), smul_smul, mul_assoc, ← smul_smul, ← smul_smul, ← smul_succ],
-- have image_q_notin_V : g ^ i'.succ • q ∉ V,
-- { have i'succ_ne_zero := ne_zero.pos i'.succ,
-- exact giq_notin_V (⟨ i'.succ, succ_i'_lt_n ⟩ : fin n) i'succ_ne_zero },
-- exact by_contradiction (λ c, c (by_contradiction (λ c', image_q_notin_V ((rist_supported_in_set h_in_ristV) c')))) } },
-- -- Combined with g^i q ≠ q, this yields (hg)^i q ≠ q for all 0 < i < n
-- have hgiq_ne_q : ∀ (i : fin n), (i : ) > 0 → (h * g) ^ (i : ) • q ≠ q,
-- { intros i i_pos, rw pow_hgq_eq_pow_gq i (fin.is_lt i), by_contra c, exact (giq_notin_V i i_pos) (c.symm ▸ q_in_V) },
-- -- This even holds for i = n
-- have hgnq_ne_q : (h * g) ^ n • q ≠ q,
-- { -- Rewrite (hg)^n q = hg^n q
-- have npred_lt_n : n.pred < n, exact (nat.succ_pred_eq_of_pos n_pos) ▸ (lt_add_one n.pred),
-- rcases coe_nat_fin npred_lt_n with ⟨ i', i'_eq_pred_n ⟩,
-- have hgi'q_eq_gi'q := pow_hgq_eq_pow_gq i' (i'_eq_pred_n ▸ npred_lt_n),
-- have : n = (i' : ).succ := i'_eq_pred_n ▸ (nat.succ_pred_eq_of_pos n_pos).symm,
-- rw [this, smul_succ, hgi'q_eq_gi'q, ← smul_smul, ← smul_succ, ← this],
-- -- Now it follows from g^n q = q and h q ≠ q
-- have n_le_period_qg := notfix_le_period' n_pos ((zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g)).1 giq_ne_q,
-- have period_qg_le_n := (zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g).2, rw ← n_eq_Sup at period_qg_le_n,
-- exact (ge_antisymm period_qg_le_n n_le_period_qg).symm ▸ ((pow_period_fix q (g : G)).symm ▸ hq_ne_q) },
-- -- Finally, we derive a contradiction
-- have period_pos_le_n := zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) (⟨ h * g, hg_in_ristU ⟩ : rigid_stabilizer G U),
-- rw ← n_eq_Sup at period_pos_le_n,
-- cases (lt_or_eq_of_le period_pos_le_n.2),
-- { exact (hgiq_ne_q (⟨ (period (q : α) ((h : G) * (g : G))), h_1 ⟩ : fin n) period_pos_le_n.1) (pow_period_fix (q : α) ((h : G) * (g : G))) },
-- { exact hgnq_ne_q (h_1 ▸ (pow_period_fix (q : α) ((h : G) * (g : G)))) }
-- end
-- lemma proposition_2_1 [t2_space α] (f : G) : is_locally_moving G α → (algebraic_centralizer f).centralizer = rigid_stabilizer G (regular_support α f) := sorry
-- end finite_exponent
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
end Rubin
end Rubin