You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/SmulImage.lean

562 lines
17 KiB

import Mathlib.Data.Finset.Basic
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.Topology.Basic
import Rubin.MulActionExt
import Rubin.Topology
namespace Rubin
/--
The image of a group action (here generalized to any pair `(G, α)` implementing `SMul`)
is the image of the elements of `U` under the `g • u` operation.
An alternative definition (which is available through the [`mem_smulImage`] theorem and the [`smulImage_set`] equality) would be:
`SmulImage g U = {x | g⁻¹ • x ∈ U}`.
The notation used for this operator is `g •'' U`.
-/
def SmulImage {G α : Type _} [SMul G α] (g : G) (U : Set α) :=
(g • ·) '' U
#align subset_img Rubin.SmulImage
infixl:60 " •'' " => Rubin.SmulImage
/--
The pre-image of a group action (here generalized to any pair `(G, α)` implementing `SMul`)
is the set of values `x: α` such that `g • x ∈ U`.
Unlike [`SmulImage`], no notation is defined for this operator.
--/
def SmulPreImage {G α : Type _} [SMul G α] (g : G) (U : Set α) :=
{x | g • x ∈ U}
#align subset_preimg' Rubin.SmulPreImage
variable {G α : Type _}
variable [Group G]
variable [MulAction G α]
theorem smulImage_def {g : G} {U : Set α} : g •'' U = (· • ·) g '' U :=
rfl
#align subset_img_def Rubin.smulImage_def
theorem mem_smulImage {x : α} {g : G} {U : Set α} : x ∈ g •'' U ↔ g⁻¹ • x ∈ U :=
by
rw [Rubin.smulImage_def, Set.mem_image (g • ·) U x]
constructor
· rintro ⟨y, yU, gyx⟩
let ygx : y = g⁻¹ • x := inv_smul_smul g y ▸ Rubin.smul_congr g⁻¹ gyx
exact ygx ▸ yU
· intro h
exact ⟨g⁻¹ • x, ⟨Set.mem_preimage.mp h, smul_inv_smul g x⟩⟩
#align mem_smul'' Rubin.mem_smulImage
-- Provides a way to express a [`SmulImage`] as a `Set`;
-- this is simply [`mem_smulImage`] paired with set extensionality.
theorem smulImage_set {g: G} {U: Set α} : g •'' U = {x | g⁻¹ • x ∈ U} := Set.ext (fun _x => mem_smulImage)
@[simp]
theorem smulImage_preImage (g: G) (U: Set α) : (fun p => g • p) ⁻¹' U = g⁻¹ •'' U := by
ext x
simp
rw [mem_smulImage, inv_inv]
theorem mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹ •'' U ↔ g • x ∈ U :=
by
let msi := @Rubin.mem_smulImage _ _ _ _ x g⁻¹ U
rw [inv_inv] at msi
exact msi
#align mem_inv_smul'' Rubin.mem_inv_smulImage
@[simp]
theorem mem_smulImage' {x : α} (g : G) {U : Set α} : g • x ∈ g •'' U ↔ x ∈ U :=
by
rw [mem_smulImage]
rw [<-mul_smul, mul_left_inv, one_smul]
@[simp]
theorem smulImage_mul (g h : G) (U : Set α) : g •'' (h •'' U) = (g * h) •'' U :=
by
ext
rw [Rubin.mem_smulImage, Rubin.mem_smulImage, Rubin.mem_smulImage, ←
mul_smul, mul_inv_rev]
#align mul_smul'' Rubin.smulImage_mul
@[simp]
theorem one_smulImage (U : Set α) : (1 : G) •'' U = U :=
by
ext
rw [Rubin.mem_smulImage, inv_one, one_smul]
#align one_smul'' Rubin.one_smulImage
theorem smulImage_disjoint (g : G) {U V : Set α} :
Disjoint U V → Disjoint (g •'' U) (g •'' V) :=
by
intro disjoint_U_V
rw [Set.disjoint_left]
rw [Set.disjoint_left] at disjoint_U_V
intro x x_in_gU
by_contra h
exact (disjoint_U_V (mem_smulImage.mp x_in_gU)) (mem_smulImage.mp h)
#align disjoint_smul'' Rubin.smulImage_disjoint
theorem SmulImage.congr (g : G) {U V : Set α} : U = V → g •'' U = g •'' V :=
congr_arg fun W : Set α => g •'' W
#align smul''_congr Rubin.SmulImage.congr
theorem SmulImage.inv_congr (g: G) {U V : Set α} : g •'' U = g •'' V → U = V :=
by
intro h
rw [<-one_smulImage (G := G) U]
rw [<-one_smulImage (G := G) V]
rw [<-mul_left_inv g]
repeat rw [<-smulImage_mul]
exact SmulImage.congr g⁻¹ h
theorem smulImage_inv (g: G) (U V : Set α) : g •'' U = V ↔ U = g⁻¹ •'' V := by
nth_rw 2 [<-one_smulImage (G := G) U]
rw [<-mul_left_inv g, <-smulImage_mul]
constructor
· intro h
rw [SmulImage.congr]
exact h
· intro h
apply SmulImage.inv_congr at h
exact h
theorem smulImage_mono (g : G) {U V : Set α} : U ⊆ V → g •'' U ⊆ g •'' V := by
intro h1 x
rw [Rubin.mem_smulImage, Rubin.mem_smulImage]
exact fun h2 => h1 h2
#align smul''_subset Rubin.smulImage_mono
theorem smulImage_union (g : G) {U V : Set α} : g •'' U V = (g •'' U) (g •'' V) :=
by
ext
rw [Rubin.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.mem_smulImage,
Rubin.mem_smulImage]
#align smul''_union Rubin.smulImage_union
theorem smulImage_inter (g : G) {U V : Set α} : g •'' U ∩ V = (g •'' U) ∩ (g •'' V) :=
by
ext
rw [Set.mem_inter_iff, Rubin.mem_smulImage, Rubin.mem_smulImage,
Rubin.mem_smulImage, Set.mem_inter_iff]
#align smul''_inter Rubin.smulImage_inter
@[simp]
theorem smulImage_sUnion (g : G) {S : Set (Set α)} : g •'' (⋃₀ S) = ⋃₀ {g •'' T | T ∈ S} :=
by
ext x
constructor
· intro h
rw [mem_smulImage, Set.mem_sUnion] at h
rw [Set.mem_sUnion]
let ⟨T, ⟨T_in_S, ginv_x_in_T⟩⟩ := h
simp
use T
constructor; trivial
rw [mem_smulImage]
exact ginv_x_in_T
· intro h
rw [Set.mem_sUnion] at h
rw [mem_smulImage, Set.mem_sUnion]
simp at h
let ⟨T, ⟨T_in_S, x_in_gT⟩⟩ := h
use T
constructor; trivial
rw [<-mem_smulImage]
exact x_in_gT
@[simp]
theorem smulImage_sInter (g : G) {S : Set (Set α)} : g •'' (⋂₀ S) = ⋂₀ {g •'' T | T ∈ S} := by
ext x
constructor
· intro h
rw [mem_smulImage, Set.mem_sInter] at h
rw [Set.mem_sInter]
simp
intro T T_in_S
rw [mem_smulImage]
exact h T T_in_S
· intro h
rw [Set.mem_sInter] at h
rw [mem_smulImage, Set.mem_sInter]
intro T T_in_S
rw [<-mem_smulImage]
simp at h
exact h T T_in_S
@[simp]
theorem smulImage_iInter {β : Type _} (g : G) (S : Set β) (f : β → Set α) :
g •'' (⋂ x ∈ S, f x) = ⋂ x ∈ S, g •'' (f x) :=
by
ext x
constructor
· intro h
rw [mem_smulImage] at h
simp
simp at h
intro i i_in_S
rw [mem_smulImage]
exact h i i_in_S
· intro h
simp at h
rw [mem_smulImage]
simp
intro i i_in_S
rw [<-mem_smulImage]
exact h i i_in_S
@[simp]
theorem smulImage_iInter_fin {β : Type _} (g : G) (S : Finset β) (f : β → Set α) :
g •'' (⋂ x ∈ S, f x) = ⋂ x ∈ S, g •'' (f x) :=
by
-- For some strange reason I can't use the above theorem
ext x
rw [mem_smulImage, Set.mem_iInter, Set.mem_iInter]
simp
conv => {
rhs
ext; ext
rw [mem_smulImage]
}
@[simp]
theorem smulImage_compl (g : G) (U : Set α) : (g •'' U)ᶜ = g •'' Uᶜ :=
by
ext x
rw [Set.mem_compl_iff]
repeat rw [mem_smulImage]
rw [Set.mem_compl_iff]
@[simp]
theorem smulImage_nonempty (g: G) {U : Set α} : Set.Nonempty (g •'' U) ↔ Set.Nonempty U :=
by
constructor
· intro ⟨x, x_in_gU⟩
use g⁻¹•x
rw [<-mem_smulImage]
assumption
· intro ⟨x, x_in_U⟩
use g•x
simp
assumption
theorem smulImage_eq_inv_preimage {g : G} {U : Set α} : g •'' U = (g⁻¹ • ·) ⁻¹' U :=
by
ext
constructor
· intro h; rw [Set.mem_preimage]; exact mem_smulImage.mp h
· intro h; rw [Rubin.mem_smulImage]; exact Set.mem_preimage.mp h
#align smul''_eq_inv_preimage Rubin.smulImage_eq_inv_preimage
theorem smulImage_eq_of_smul_eq {g h : G} {U : Set α} :
(∀ x ∈ U, g • x = h • x) → g •'' U = h •'' U :=
by
intro hU
ext x
rw [Rubin.mem_smulImage, Rubin.mem_smulImage]
constructor
· intro k; let a := congr_arg (h⁻¹ • ·) (hU (g⁻¹ • x) k);
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a k
· intro k; let a := congr_arg (g⁻¹ • ·) (hU (h⁻¹ • x) k);
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a.symm k
#align smul''_eq_of_smul_eq Rubin.smulImage_eq_of_smul_eq
theorem smulImage_subset_inv {G α : Type _} [Group G] [MulAction G α]
(f : G) (U V : Set α) :
f •'' U ⊆ V ↔ U ⊆ f⁻¹ •'' V :=
by
constructor
· intro h
apply smulImage_mono f⁻¹ at h
rw [smulImage_mul] at h
rw [mul_left_inv, one_smulImage] at h
exact h
· intro h
apply smulImage_mono f at h
rw [smulImage_mul] at h
rw [mul_right_inv, one_smulImage] at h
exact h
theorem smulImage_subset_inv' {G α : Type _} [Group G] [MulAction G α]
(f : G) (U V : Set α) :
f⁻¹ •'' U ⊆ V ↔ U ⊆ f •'' V :=
by
nth_rewrite 2 [<-inv_inv f]
exact smulImage_subset_inv f⁻¹ U V
theorem smulImage_disjoint_mul {G α : Type _} [Group G] [MulAction G α]
(f g : G) (U V : Set α) :
Disjoint (f •'' U) (g •'' V) ↔ Disjoint U ((f⁻¹ * g) •'' V) := by
constructor
· intro h
apply smulImage_disjoint f⁻¹ at h
repeat rw [smulImage_mul] at h
rw [mul_left_inv, one_smulImage] at h
exact h
· intro h
apply smulImage_disjoint f at h
rw [smulImage_mul] at h
rw [<-mul_assoc] at h
rw [mul_right_inv, one_mul] at h
exact h
theorem smulImage_disjoint_inv_pow {G α : Type _} [Group G] [MulAction G α]
(g : G) (i j : ) (U V : Set α) :
Disjoint (g^i •'' U) (g^j •'' V) ↔ Disjoint (g^(-j) •'' U) (g^(-i) •'' V) :=
by
rw [smulImage_disjoint_mul]
rw [<-zpow_neg, <-zpow_add, add_comm, zpow_add, zpow_neg]
rw [<-inv_inv (g^j)]
rw [<-smulImage_disjoint_mul]
simp
theorem smulImage_disjoint_subset {G α : Type _} [Group G] [MulAction G α]
{f g : G} {U V : Set α} (h_sub: U ⊆ V):
Disjoint (f •'' V) (g •'' V) → Disjoint (f •'' U) (g •'' U) :=
Set.disjoint_of_subset (smulImage_mono _ h_sub) (smulImage_mono _ h_sub)
-- States that if `g^i •'' V` and `g^j •'' V` are disjoint for any `i ≠ j` and `x ∈ V`
-- then `g^i • x` will always lie outside of `V` if `x ∈ V`.
lemma smulImage_distinct_of_disjoint_pow {G α : Type _} [Group G] [MulAction G α] {g : G} {V : Set α} {n : }
(n_pos : 0 < n)
(h_disj : ∀ (i j : Fin n), i ≠ j → Disjoint (g ^ (i : ) •'' V) (g ^ (j : ) •'' V)) :
∀ (x : α) (_hx : x ∈ V) (i : Fin n), 0 < (i : ) → g ^ (i : ) • (x : α) ∉ V :=
by
intro x hx i i_pos
have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : Fin n) := by
intro h
rw [h] at i_pos
simp at i_pos
have h_contra : g ^ (i : ) • (x : α) ∈ g ^ (i : ) •'' V := by use x
have h_notin_V := Set.disjoint_left.mp (h_disj i (⟨0, n_pos⟩ : Fin n) i_ne_zero) h_contra
simp only [pow_zero, one_smulImage] at h_notin_V
exact h_notin_V
#align distinct_images_from_disjoint Rubin.smulImage_distinct_of_disjoint_pow
theorem smulImage_isOpen {G α : Type _}
[Group G] [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α] (g : G)
{S : Set α} (S_open : IsOpen S) : IsOpen (g •'' S) :=
by
rw [smulImage_eq_inv_preimage]
exact (continuous_id.const_smul g⁻¹).isOpen_preimage S S_open
theorem smulImage_isClosed {G α : Type _}
[Group G] [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α] (g : G)
{S : Set α} (S_open : IsClosed S) : IsClosed (g •'' S) :=
by
rw [<-isOpen_compl_iff]
rw [<-isOpen_compl_iff] at S_open
rw [smulImage_compl]
apply smulImage_isOpen
assumption
theorem smulImage_interior {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α]
[hc : ContinuousConstSMul G α] (g : G) (U : Set α) :
interior (g •'' U) = g •'' interior U :=
by
unfold interior
rw [smulImage_sUnion]
simp
ext x
simp
constructor
· intro ⟨T, ⟨T_open, T_sub⟩, x_in_T⟩
use g⁻¹ •'' T
repeat' apply And.intro
· exact smulImage_isOpen g⁻¹ T_open
· rw [smulImage_subset_inv]
rw [inv_inv]
exact T_sub
· rw [smulImage_mul, mul_right_inv, one_smulImage]
exact x_in_T
· intro ⟨T, ⟨T_open, T_sub⟩, x_in_T⟩
use g •'' T
repeat' apply And.intro
· exact smulImage_isOpen g T_open
· apply smulImage_mono
exact T_sub
· exact x_in_T
theorem smulImage_closure {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α]
[ContinuousConstSMul G α] (g : G) (U : Set α) :
closure (g •'' U) = g •'' closure U :=
by
unfold closure
rw [smulImage_sInter]
simp
ext x
simp
constructor
· intro IH T' T T_closed U_ss_T T'_eq
rw [<-T'_eq]
clear T' T'_eq
apply IH
· exact smulImage_isClosed g T_closed
· apply smulImage_mono
exact U_ss_T
· intro IH T T_closed gU_ss_T
apply IH
· exact smulImage_isClosed g⁻¹ T_closed
· rw [<-smulImage_subset_inv]
exact gU_ss_T
· simp
section Filters
open Topology
variable {G α : Type _}
variable [Group G] [MulAction G α]
/--
An SMul can be extended to filters, while preserving the properties of `MulAction`.
To avoid polluting the `SMul` instances for filters, those properties are made separate,
instead of implementing `MulAction G (Filter α)`.
--/
def SmulFilter {G α : Type _} [SMul G α] (g : G) (F : Filter α) : Filter α :=
Filter.map (fun p => g • p) F
infixl:60 " •ᶠ " => Rubin.SmulFilter
theorem smulFilter_def {G α : Type _} [SMul G α] (g : G) (F : Filter α) :
Filter.map (fun p => g • p) F = g •ᶠ F := rfl
theorem smulFilter_neBot {G α : Type _} [SMul G α] (g : G) {F : Filter α} (F_neBot : Filter.NeBot F) :
Filter.NeBot (g •ᶠ F) :=
by
rw [<-smulFilter_def]
exact Filter.map_neBot
instance smulFilter_neBot' {G α : Type _} [SMul G α] {g : G} {F : Filter α} [F_neBot : Filter.NeBot F] :
Filter.NeBot (g •ᶠ F) := smulFilter_neBot g F_neBot
theorem smulFilter_principal (g : G) (S : Set α) :
g •ᶠ Filter.principal S = Filter.principal (g •'' S) :=
by
rw [<-smulFilter_def]
rw [Filter.map_principal]
rfl
theorem mul_smulFilter (g h: G) (F : Filter α) :
(g * h) •ᶠ F = g •ᶠ (h •ᶠ F) :=
by
repeat rw [<-smulFilter_def]
simp only [mul_smul]
rw [Filter.map_map]
rfl
theorem one_smulFilter (G : Type _) [Group G] [MulAction G α] (F : Filter α) :
(1 : G) •ᶠ F = F :=
by
rw [<-smulFilter_def]
simp only [one_smul]
exact Filter.map_id
theorem mem_smulFilter_iff (g : G) (F : Filter α) (U : Set α) :
U ∈ g •ᶠ F ↔ g⁻¹ •'' U ∈ F :=
by
rw [<-smulFilter_def, Filter.mem_map, smulImage_eq_inv_preimage, inv_inv]
theorem smulFilter_mono (g : G) (F F' : Filter α) :
F ≤ F' ↔ g •ᶠ F ≤ g •ᶠ F' :=
by
suffices ∀ (g : G) (F F' : Filter α), F ≤ F' → g •ᶠ F ≤ g •ᶠ F' by
constructor
apply this
intro H
specialize this g⁻¹ _ _ H
repeat rw [<-mul_smulFilter] at this
rw [mul_left_inv] at this
repeat rw [one_smulFilter] at this
exact this
intro g F F' F_le_F'
intro U U_in_gF
rw [mem_smulFilter_iff] at U_in_gF
rw [mem_smulFilter_iff]
apply F_le_F'
assumption
theorem smulFilter_le_iff_le_inv (g : G) (F F' : Filter α) :
F ≤ g •ᶠ F' ↔ g⁻¹ •ᶠ F ≤ F' :=
by
nth_rw 2 [<-one_smulFilter G F']
rw [<-mul_left_inv g, mul_smulFilter]
exact smulFilter_mono g⁻¹ _ _
variable [TopologicalSpace α]
theorem smulFilter_nhds (g : G) (p : α) [ContinuousConstSMul G α]:
g •ᶠ 𝓝 p = 𝓝 (g • p) :=
by
ext S
rw [<-smulFilter_def, Filter.mem_map, mem_nhds_iff, mem_nhds_iff]
simp
constructor
· intro ⟨T, T_ss_smulImage, T_open, p_in_T⟩
use g •'' T
repeat' apply And.intro
· rw [smulImage_subset_inv]
assumption
· exact smulImage_isOpen g T_open
· simp
assumption
· intro ⟨T, T_ss_S, T_open, gp_in_T⟩
use g⁻¹ •'' T
repeat' apply And.intro
· apply smulImage_mono
assumption
· exact smulImage_isOpen g⁻¹ T_open
· rw [mem_smulImage, inv_inv]
assumption
theorem smulFilter_clusterPt (g : G) (F : Filter α) (x : α) [ContinuousConstSMul G α] :
ClusterPt x (g •ᶠ F) ↔ ClusterPt (g⁻¹ • x) F :=
by
suffices ∀ (g : G) (F : Filter α) (x : α), ClusterPt x (g •ᶠ F) → ClusterPt (g⁻¹ • x) F by
constructor
apply this
intro gx_clusterPt_F
rw [<-one_smul G x, <-mul_right_inv g, mul_smul]
nth_rw 1 [<-inv_inv g]
apply this
rw [<-mul_smulFilter, mul_left_inv, one_smulFilter]
assumption
intro g F x x_cp_gF
rw [clusterPt_iff_forall_mem_closure]
rw [clusterPt_iff_forall_mem_closure] at x_cp_gF
simp only [mem_smulFilter_iff] at x_cp_gF
intro S S_in_F
rw [<-mem_inv_smulImage]
rw [<-smulImage_closure]
apply x_cp_gF
rw [inv_inv, smulImage_mul, mul_left_inv, one_smulImage]
assumption
theorem smulImage_compact [ContinuousConstSMul G α] (g : G) {U : Set α} (U_compact : IsCompact U) :
IsCompact (g •'' U) :=
by
intro F F_neBot F_le_principal
rw [<-smulFilter_principal, smulFilter_le_iff_le_inv] at F_le_principal
let ⟨x, x_in_U, x_clusterPt⟩ := U_compact F_le_principal
use g • x
constructor
· rw [mem_smulImage']
assumption
· rw [smulFilter_clusterPt, inv_inv] at x_clusterPt
assumption
end Filters
end Rubin