You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/Topology.lean

230 lines
8.6 KiB

import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.GroupTheory.GroupAction.Hom
import Mathlib.Topology.Basic
import Mathlib.Topology.Homeomorph
import Mathlib.Topology.Algebra.ConstMulAction
import Mathlib.Data.Set.Basic
import Rubin.MulActionExt
namespace Rubin
section Equivariant
-- TODO: rename or remove?
def IsEquivariant (G : Type _) {β : Type _} [Group G] [MulAction G α]
[MulAction G β] (f : α → β) :=
∀ g : G, ∀ x : α, f (g • x) = g • f x
-- TODO: rename to MulActionHomeomorph
structure EquivariantHomeomorph (G α β : Type _) [Group G] [TopologicalSpace α]
[TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where
toFun_equivariant' : IsEquivariant G toFun
variable {G α β γ: Type*}
variable [Group G]
variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
variable [MulAction G α] [MulAction G β] [MulAction G γ]
theorem EquivariantHomeomorph.toFun_equivariant (f : EquivariantHomeomorph G α β) :
IsEquivariant G f.toHomeomorph :=
by
show IsEquivariant G f.toFun
exact f.toFun_equivariant'
instance EquivariantHomeomorph.smulHomClass : SMulHomClass (EquivariantHomeomorph G α β) G α β where
coe := fun f => f.toFun
coe_injective' := by
show Function.Injective (fun f => f.toHomeomorph)
refine Function.Injective.comp FunLike.coe_injective ?mk_inj
intro f g
rw [mk.injEq]
tauto
map_smul := fun f => f.toFun_equivariant
theorem EquivariantHomeomorph.invFun_equivariant
(h : EquivariantHomeomorph G α β) :
IsEquivariant G h.invFun :=
by
intro g x
symm
let e := congr_arg h.invFun (h.toFun_equivariant' g (h.invFun x))
rw [h.left_inv _, h.right_inv _] at e
exact e
def EquivariantHomeomorph.trans (f₁ : EquivariantHomeomorph G α β) (f₂ : EquivariantHomeomorph G β γ) :
EquivariantHomeomorph G α γ
where
toHomeomorph := Homeomorph.trans f₁.toHomeomorph f₂.toHomeomorph
toFun_equivariant' := by
intro g x
simp
rw [f₁.toFun_equivariant]
rw [f₂.toFun_equivariant]
@[simp]
theorem EquivariantHomeomorph.trans_toFun (f₁ : EquivariantHomeomorph G α β) (f₂ : EquivariantHomeomorph G β γ) :
(f₁.trans f₂).toFun = f₂.toFun ∘ f₁.toFun :=
by
simp [trans]
rfl
@[simp]
theorem EquivariantHomeomorph.trans_invFun (f₁ : EquivariantHomeomorph G α β) (f₂ : EquivariantHomeomorph G β γ) :
(f₁.trans f₂).invFun = f₁.invFun ∘ f₂.invFun :=
by
simp [trans]
rfl
def EquivariantHomeomorph.inv (f : EquivariantHomeomorph G α β) :
EquivariantHomeomorph G β α
where
toHomeomorph := f.symm
toFun_equivariant' := f.invFun_equivariant
@[simp]
theorem EquivariantHomeomorph.inv_toFun (f : EquivariantHomeomorph G α β) :
f.inv.toFun = f.invFun := rfl
@[simp]
theorem EquivariantHomeomorph.inv_invFun (f : EquivariantHomeomorph G α β) :
f.inv.invFun = f.toFun := rfl
end Equivariant
open Topology
-- Note: this sounds like a general enough theorem that it should already be in mathlib
lemma inter_of_open_subset_of_closure {α : Type _} [TopologicalSpace α] {U V : Set α}
(U_open : IsOpen U) (U_nonempty : Set.Nonempty U) (V_nonempty : Set.Nonempty V)
(U_ss_clV : U ⊆ closure V) : Set.Nonempty (U ∩ V) :=
by
by_contra empty
rw [Set.not_nonempty_iff_eq_empty] at empty
rw [Set.nonempty_iff_ne_empty] at U_nonempty
apply U_nonempty
have clV_diff_U_ss_V : V ⊆ closure V \ U := by
rw [Set.subset_diff]
constructor
exact subset_closure
symm
rw [Set.disjoint_iff_inter_eq_empty]
exact empty
have clV_diff_U_closed : IsClosed (closure V \ U) := by
apply IsClosed.sdiff
exact isClosed_closure
assumption
unfold closure at U_ss_clV
simp at U_ss_clV
specialize U_ss_clV (closure V \ U) clV_diff_U_closed clV_diff_U_ss_V
rw [Set.subset_diff] at U_ss_clV
rw [Set.disjoint_iff_inter_eq_empty] at U_ss_clV
simp at U_ss_clV
exact U_ss_clV.right
/--
Note: `𝓝[≠] x` is notation for `nhdsWithin x {[x]}ᶜ`, ie. the neighborhood of x not containing itself.
--/
class HasNoIsolatedPoints (α : Type _) [TopologicalSpace α] :=
-- TODO: rename to nhdsWithin_ne_bot
nhbd_ne_bot : ∀ x : α, 𝓝[≠] x ≠ ⊥
#align has_no_isolated_points Rubin.HasNoIsolatedPoints
instance has_no_isolated_points_neBot₁ {α : Type _} [TopologicalSpace α] [h_nip: HasNoIsolatedPoints α]
(x: α) : Filter.NeBot (𝓝[≠] x) where
ne' := h_nip.nhbd_ne_bot x
theorem Filter.NeBot.choose {α : Type _} (F : Filter α) [Filter.NeBot F] :
∃ S : Set α, S ∈ F :=
by
have res := (Filter.inhabitedMem (α := α) (f := F)).default
exact ⟨res.val, res.prop⟩
theorem TopologicalSpace.IsTopologicalBasis.contains_point {α : Type _} [TopologicalSpace α]
{B : Set (Set α)} (B_basis : TopologicalSpace.IsTopologicalBasis B) (p : α) :
∃ S : Set α, S ∈ B ∧ p ∈ S :=
by
have nhds_basis := B_basis.nhds_hasBasis (a := p)
rw [Filter.hasBasis_iff] at nhds_basis
let ⟨S₁, S₁_in_nhds⟩ := Filter.NeBot.choose (𝓝 p)
let ⟨S, ⟨⟨S_in_B, p_in_S⟩, _⟩⟩ := (nhds_basis S₁).mp S₁_in_nhds
exact ⟨S, S_in_B, p_in_S⟩
-- The collection of all the sets in `B` (a topological basis of `α`), such that `p` is in them.
def TopologicalBasisContaining {α : Type _} [TopologicalSpace α]
{B : Set (Set α)} (B_basis : TopologicalSpace.IsTopologicalBasis B) (p : α) : FilterBasis α
where
sets := {b ∈ B | p ∈ b}
nonempty := by
let ⟨S, S_in_B, p_in_S⟩ := TopologicalSpace.IsTopologicalBasis.contains_point B_basis p
use S
simp
tauto
inter_sets := by
intro S T ⟨S_in_B, p_in_S⟩ ⟨T_in_B, p_in_T⟩
have S_in_nhds := B_basis.mem_nhds_iff.mpr ⟨S, S_in_B, ⟨p_in_S, Eq.subset rfl⟩⟩
have T_in_nhds := B_basis.mem_nhds_iff.mpr ⟨T, T_in_B, ⟨p_in_T, Eq.subset rfl⟩⟩
have ST_in_nhds : S ∩ T ∈ 𝓝 p := Filter.inter_mem S_in_nhds T_in_nhds
rw [B_basis.mem_nhds_iff] at ST_in_nhds
let ⟨U, props⟩ := ST_in_nhds
use U
simp
simp at props
tauto
theorem TopologicalBasisContaining.mem_iff {α : Type _} [TopologicalSpace α]
{B : Set (Set α)} (B_basis : TopologicalSpace.IsTopologicalBasis B) (p : α) (S : Set α) :
S ∈ TopologicalBasisContaining B_basis p ↔ S ∈ B ∧ p ∈ S :=
by
rw [<-FilterBasis.mem_sets]
rfl
theorem TopologicalBasisContaining.mem_nhds {α : Type _} [TopologicalSpace α]
{B : Set (Set α)} (B_basis : TopologicalSpace.IsTopologicalBasis B) (p : α) (S : Set α) :
S ∈ TopologicalBasisContaining B_basis p → S ∈ 𝓝 p :=
by
rw [TopologicalBasisContaining.mem_iff]
rw [B_basis.mem_nhds_iff]
intro ⟨S_in_B, p_in_S⟩
use S
instance TopologicalBasisContaining.neBot {α : Type _} [TopologicalSpace α]
{B : Set (Set α)} (B_basis : TopologicalSpace.IsTopologicalBasis B) (p : α) :
Filter.NeBot (TopologicalBasisContaining B_basis p).filter where
ne' := by
intro empty_in
rw [<-Filter.empty_mem_iff_bot, FilterBasis.mem_filter_iff] at empty_in
let ⟨S, ⟨S_in_basis, S_ss_empty⟩⟩ := empty_in
rw [TopologicalBasisContaining.mem_iff] at S_in_basis
exact S_ss_empty S_in_basis.right
-- Note: the definition of "convergence" in the article doesn't quite match with the definition of ClusterPt
-- Instead, `F ≤ nhds p` should be used.
-- Note: Filter.HasBasis is a stronger statement than just FilterBasis - it defines a two-way relationship between a filter and a property; if the property is true for a set, then any superset of it is part of the filter, and vice-versa.
-- With this, it's impossible for there to be a finer filter satisfying the property,
-- as is evidenced by `filter_eq`: stripping away the `Filter` allows us to uniquely reconstruct it from the property itself.
-- Proposition 3.3.1 trivially follows from `TopologicalSpace.IsTopologicalBasis.nhds_hasBasis` and `disjoint_nhds_nhds`: if `F.HasBasis (S → S ∈ B ∧ p ∈ S)` and `F.HasBasis (S → S ∈ B ∧ q ∈ S)`,
-- then one can prove that `F ≤ nhds x` and `F ≤ nhds y` ~> `F = ⊥`
-- Proposition 3.3.2 becomes simply `TopologicalSpace.IsTopologicalBasis.nhds_hasBasis`
-- Proposition 3.3.3 is a consequence of the structure of `HasBasis`
-- Proposition 3.4.1 can maybe be proven with `TopologicalSpace.IsTopologicalBasis.mem_closure_iff`?
-- The tricky part here though is that "F is an ultra(pre)filter on B" can't easily be expressed.
-- I should maybe define a Prop for it, and show that "F is an ultrafilter on B" + "F tends to a point p"
-- is equivalent to `TopologicalSpace.IsTopologicalBasis.nhds_hasBasis`.
-- The alternative is to only work with `Filter`, and state conditions with `Filter.HasBasis`,
-- since that will force the filter to be an ultraprefilter on B.
end Rubin