|
|
@ -134,7 +134,7 @@ lemma proposition_1_1_1 [h_lm : LocallyMoving G α] [T2Space α] (f g : G) (supp
|
|
|
|
_ ⊆ W ∪ (k •'' Support α f₁) := Set.union_subset_union_left _ supp_f₁_subset_W
|
|
|
|
_ ⊆ W ∪ (k •'' Support α f₁) := Set.union_subset_union_left _ supp_f₁_subset_W
|
|
|
|
_ ⊆ W ∪ (k •'' W) := by
|
|
|
|
_ ⊆ W ∪ (k •'' W) := by
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
exact (smulImage_subset k supp_f₁_subset_W)
|
|
|
|
exact (smulImage_mono k supp_f₁_subset_W)
|
|
|
|
_ = W ∪ (f₂ •'' W) := by rw [<-smulImage_eq_of_smul_eq h₂]
|
|
|
|
_ = W ∪ (f₂ •'' W) := by rw [<-smulImage_eq_of_smul_eq h₂]
|
|
|
|
_ ⊆ V ∪ (f₂ •'' W) := Set.union_subset_union_left _ W_in_V
|
|
|
|
_ ⊆ V ∪ (f₂ •'' W) := Set.union_subset_union_left _ W_in_V
|
|
|
|
_ ⊆ V ∪ V := by
|
|
|
|
_ ⊆ V ∪ V := by
|
|
|
@ -217,7 +217,7 @@ by
|
|
|
|
have V_disjoint_smulImage: Disjoint V (f •'' V) := by
|
|
|
|
have V_disjoint_smulImage: Disjoint V (f •'' V) := by
|
|
|
|
apply Set.disjoint_of_subset
|
|
|
|
apply Set.disjoint_of_subset
|
|
|
|
· exact Set.inter_subset_left _ _
|
|
|
|
· exact Set.inter_subset_left _ _
|
|
|
|
· apply smulImage_subset
|
|
|
|
· apply smulImage_mono
|
|
|
|
exact Set.inter_subset_left _ _
|
|
|
|
exact Set.inter_subset_left _ _
|
|
|
|
· exact disjoint_img_V₀
|
|
|
|
· exact disjoint_img_V₀
|
|
|
|
|
|
|
|
|
|
|
@ -253,7 +253,7 @@ by
|
|
|
|
exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) := by
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) := by
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
apply smulImage_subset
|
|
|
|
apply smulImage_mono
|
|
|
|
exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
have support_h' : Support α h' ⊆ ⋃(i : Fin 2 × Fin 2), (f₁^(i.1.val) * f₂^(i.2.val)) •'' V := by
|
|
|
|
have support_h' : Support α h' ⊆ ⋃(i : Fin 2 × Fin 2), (f₁^(i.1.val) * f₂^(i.2.val)) •'' V := by
|
|
|
|
rw [rewrite_Union]
|
|
|
|
rw [rewrite_Union]
|
|
|
@ -266,7 +266,7 @@ by
|
|
|
|
exact support_f₂_h
|
|
|
|
exact support_f₂_h
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) ∪ (f₁ •'' V ∪ (f₂ •'' V)) := by
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) ∪ (f₁ •'' V ∪ (f₂ •'' V)) := by
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
apply smulImage_subset f₁
|
|
|
|
apply smulImage_mono f₁
|
|
|
|
exact support_f₂_h
|
|
|
|
exact support_f₂_h
|
|
|
|
|
|
|
|
|
|
|
|
-- Since h' is nontrivial, it has at least one point p in its support
|
|
|
|
-- Since h' is nontrivial, it has at least one point p in its support
|
|
|
@ -367,9 +367,9 @@ by
|
|
|
|
have disj : ∀ (i j : Fin n), i ≠ j → Disjoint (g ^ (i : ℕ) •'' V) (g ^ (j : ℕ) •'' V) := by
|
|
|
|
have disj : ∀ (i j : Fin n), i ≠ j → Disjoint (g ^ (i : ℕ) •'' V) (g ^ (j : ℕ) •'' V) := by
|
|
|
|
intro i j i_ne_j
|
|
|
|
intro i j i_ne_j
|
|
|
|
apply Set.disjoint_of_subset
|
|
|
|
apply Set.disjoint_of_subset
|
|
|
|
· apply smulImage_subset
|
|
|
|
· apply smulImage_mono
|
|
|
|
apply Set.inter_subset_right
|
|
|
|
apply Set.inter_subset_right
|
|
|
|
· apply smulImage_subset
|
|
|
|
· apply smulImage_mono
|
|
|
|
apply Set.inter_subset_right
|
|
|
|
apply Set.inter_subset_right
|
|
|
|
exact disj' i j i_ne_j
|
|
|
|
exact disj' i j i_ne_j
|
|
|
|
|
|
|
|
|
|
|
|