Fully prove proposition 3.5

laurent-lost-commits
Shad Amethyst 11 months ago
parent 24dd2c4f0a
commit 50b4b49932

@ -159,8 +159,6 @@ lemma proposition_1_1_1 [h_lm : LocallyMoving G α] [T2Space α] (f g : G) (supp
exact z_moved h₆
#align proposition_1_1_1 Rubin.proposition_1_1_1
-- TODO: move to Rubin.lean
lemma moves_1234_of_moves_12 {g : G} {x : α} (g12_moves : g^12 • x ≠ x) :
Function.Injective (fun i : Fin 5 => g^(i : ) • x) :=
by
@ -775,6 +773,16 @@ by
let ⟨x, _, F_clusterPt⟩ := clS_compact F_le_principal_S
use x
end HomeoGroup
section Ultrafilter
variable {G α : Type _}
variable [Group G]
variable [TopologicalSpace α] [T2Space α]
variable [MulAction G α] [ContinuousMulAction G α] [FaithfulSMul G α] [LocallyMoving G α]
def RSuppSubsets {α : Type _} [TopologicalSpace α] (V : Set α) : Set (Set α) :=
{W ∈ RegularSupportBasis.asSet α | W ⊆ V}
@ -800,18 +808,48 @@ by
rw [hq_eq_p]
assumption
lemma compact_subset_of_rsupp_basis [LocallyCompactSpace α]
lemma compact_subset_of_rsupp_basis (G : Type _) {α : Type _}
[Group G] [TopologicalSpace α] [T2Space α]
[MulAction G α] [ContinuousMulAction G α]
[LocallyCompactSpace α] [HasNoIsolatedPoints α] [LocallyDense G α]
(U : RegularSupportBasis α):
∃ V : RegularSupportBasis α, (closure V.val) ⊆ U.val ∧ IsCompact (closure V.val) :=
by
-- Idea: use (RegularSupportBasis.isBasis G α).nhds_hasBasis and compact_basis_nhds together?
-- Note: exists_compact_subset is *very* close to this theorem
sorry
let ⟨x, x_in_U⟩ := U.nonempty
let ⟨W, W_compact, x_in_intW, W_ss_U⟩ := exists_compact_subset U.regular.isOpen x_in_U
have ⟨V, V_in_basis, x_in_V, V_ss_intW⟩ := (RegularSupportBasis.isBasis G α).exists_subset_of_mem_open x_in_intW isOpen_interior
have clV_ss_W : closure V ⊆ W := by
calc
closure V ⊆ closure (interior W) := by
apply closure_mono
exact V_ss_intW
_ ⊆ closure W := by
apply closure_mono
exact interior_subset
_ = W := by
apply IsClosed.closure_eq
exact W_compact.isClosed
rw [RegularSupportBasis.mem_asSet] at V_in_basis
let ⟨V', V'_val⟩ := V_in_basis
use V'
rw [V'_val]
constructor
· exact subset_trans clV_ss_W W_ss_U
· exact IsCompact.of_isClosed_subset W_compact isClosed_closure clV_ss_W
/--
# Proposition 3.5
This proposition gives an alternative definition for an ultrafilter to converge within a set `U`.
This alternative definition should be reconstructible entirely from the algebraic structure of `G`.
--/
theorem proposition_3_5 [LocallyDense G α] [LocallyCompactSpace α] [HasNoIsolatedPoints α]
(U : RegularSupportBasis α) (F: Ultrafilter α):
(∃ p ∈ U.val, ClusterPt p F)
↔ ∃ V : RegularSupportBasis α, V ≤ U ∧ RSuppSubsets V.val ⊆ RSuppOrbit F (RigidStabilizer G U.val) :=
↔ ∃ V : RegularSupportBasis α, V ≤ U ∧ RSuppSubsets V.val ⊆ RSuppOrbit F G•[U.val] :=
by
constructor
{
@ -940,7 +978,7 @@ by
rw [RegularSupportBasis.le_def] at V_ss_U
-- Obtain a compact subset of V' in the basis
let ⟨V', clV'_ss_V, clV'_compact⟩ := compact_subset_of_rsupp_basis V
let ⟨V', clV'_ss_V, clV'_compact⟩ := compact_subset_of_rsupp_basis G V
have V'_in_subsets : V'.val ∈ RSuppSubsets V.val := by
unfold RSuppSubsets
@ -984,7 +1022,7 @@ by
exact p_lim
}
end HomeoGroup
end Ultrafilter
variable {G α β : Type _}
variable [Group G]

Loading…
Cancel
Save