|
|
|
@ -64,6 +64,292 @@ where
|
|
|
|
|
|
|
|
|
|
end RubinActions
|
|
|
|
|
|
|
|
|
|
section AlgebraicDisjointness
|
|
|
|
|
|
|
|
|
|
variable {G α : Type _}
|
|
|
|
|
variable [TopologicalSpace α]
|
|
|
|
|
variable [Group G]
|
|
|
|
|
variable [ContinuousMulAction G α]
|
|
|
|
|
variable [FaithfulSMul G α]
|
|
|
|
|
|
|
|
|
|
-- TODO: modify the proof to be less "let everything"-y, especially the first half
|
|
|
|
|
lemma proposition_1_1_1 [h_lm : LocallyMoving G α] [T2Space α] (f g : G) (supp_disjoint : Disjoint (Support α f) (Support α g)) : AlgebraicallyDisjoint f g := by
|
|
|
|
|
apply AlgebraicallyDisjoint_mk
|
|
|
|
|
intros h h_not_commute
|
|
|
|
|
-- h is not the identity on `Support α f`
|
|
|
|
|
have f_h_not_disjoint := (mt (disjoint_commute (G := G) (α := α)) h_not_commute)
|
|
|
|
|
have ⟨x, ⟨x_in_supp_f, x_in_supp_h⟩⟩ := Set.not_disjoint_iff.mp f_h_not_disjoint
|
|
|
|
|
have hx_ne_x := mem_support.mp x_in_supp_h
|
|
|
|
|
|
|
|
|
|
-- Since α is Hausdoff, there is a nonempty V ⊆ Support α f, with h •'' V disjoint from V
|
|
|
|
|
have ⟨V, V_open, x_in_V, V_in_support, disjoint_img_V⟩ := disjoint_nbhd_in (support_open f) x_in_supp_f hx_ne_x
|
|
|
|
|
|
|
|
|
|
-- let f₂ be a nontrivial element of the RigidStabilizer G V
|
|
|
|
|
let ⟨f₂, f₂_in_rist_V, f₂_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem x_in_V)
|
|
|
|
|
|
|
|
|
|
-- Re-use the Hausdoff property of α again, this time yielding W ⊆ V
|
|
|
|
|
let ⟨y, y_moved⟩ := faithful_moves_point' α f₂_ne_one
|
|
|
|
|
have y_in_V := (rigidStabilizer_support.mp f₂_in_rist_V) (mem_support.mpr y_moved)
|
|
|
|
|
let ⟨W, W_open, y_in_W, W_in_V, disjoint_img_W⟩ := disjoint_nbhd_in V_open y_in_V y_moved
|
|
|
|
|
|
|
|
|
|
-- Let f₁ be a nontrivial element of RigidStabilizer G W
|
|
|
|
|
let ⟨f₁, f₁_in_rist_W, f₁_ne_one⟩ := h_lm.get_nontrivial_rist_elem W_open (Set.nonempty_of_mem y_in_W)
|
|
|
|
|
|
|
|
|
|
use f₁
|
|
|
|
|
use f₂
|
|
|
|
|
constructor <;> try constructor
|
|
|
|
|
· apply disjoint_commute (α := α)
|
|
|
|
|
apply Set.disjoint_of_subset_left _ supp_disjoint
|
|
|
|
|
calc
|
|
|
|
|
Support α f₁ ⊆ W := rigidStabilizer_support.mp f₁_in_rist_W
|
|
|
|
|
W ⊆ V := W_in_V
|
|
|
|
|
V ⊆ Support α f := V_in_support
|
|
|
|
|
· apply disjoint_commute (α := α)
|
|
|
|
|
apply Set.disjoint_of_subset_left _ supp_disjoint
|
|
|
|
|
calc
|
|
|
|
|
Support α f₂ ⊆ V := rigidStabilizer_support.mp f₂_in_rist_V
|
|
|
|
|
V ⊆ Support α f := V_in_support
|
|
|
|
|
|
|
|
|
|
-- We claim that [f₁, [f₂, h]] is a nontrivial elelement of Centralizer G g
|
|
|
|
|
let k := ⁅f₂, h⁆
|
|
|
|
|
have h₂ : ∀ z ∈ W, f₂ • z = k • z := by
|
|
|
|
|
intro z z_in_W
|
|
|
|
|
simp
|
|
|
|
|
symm
|
|
|
|
|
apply disjoint_support_comm f₂ h _ disjoint_img_V
|
|
|
|
|
· exact W_in_V z_in_W
|
|
|
|
|
· exact rigidStabilizer_support.mp f₂_in_rist_V
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
· -- then `k*f₁⁻¹*k⁻¹` is supported on k W = f₂ W,
|
|
|
|
|
-- so [f₁,k] is supported on W ∪ f₂ W ⊆ V ⊆ support f, so commutes with g.
|
|
|
|
|
apply disjoint_commute (α := α)
|
|
|
|
|
apply Set.disjoint_of_subset_left _ supp_disjoint
|
|
|
|
|
have supp_f₁_subset_W := (rigidStabilizer_support.mp f₁_in_rist_W)
|
|
|
|
|
|
|
|
|
|
show Support α ⁅f₁, ⁅f₂, h⁆⁆ ⊆ Support α f
|
|
|
|
|
calc
|
|
|
|
|
Support α ⁅f₁, k⁆ = Support α ⁅k, f₁⁆ := by rw [<-commutatorElement_inv, support_inv]
|
|
|
|
|
_ ⊆ Support α f₁ ∪ (k •'' Support α f₁) := support_comm α k f₁
|
|
|
|
|
_ ⊆ W ∪ (k •'' Support α f₁) := Set.union_subset_union_left _ supp_f₁_subset_W
|
|
|
|
|
_ ⊆ W ∪ (k •'' W) := by
|
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
|
exact (smulImage_subset k supp_f₁_subset_W)
|
|
|
|
|
_ = W ∪ (f₂ •'' W) := by rw [<-smulImage_eq_of_smul_eq h₂]
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' W) := Set.union_subset_union_left _ W_in_V
|
|
|
|
|
_ ⊆ V ∪ V := by
|
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
|
apply smulImage_subset_in_support f₂ W V W_in_V
|
|
|
|
|
exact rigidStabilizer_support.mp f₂_in_rist_V
|
|
|
|
|
_ ⊆ V := by rw [Set.union_self]
|
|
|
|
|
_ ⊆ Support α f := V_in_support
|
|
|
|
|
|
|
|
|
|
· -- finally, [f₁,k] agrees with f₁ on W, so is not the identity.
|
|
|
|
|
have h₄: ∀ z ∈ W, ⁅f₁, k⁆ • z = f₁ • z := by
|
|
|
|
|
apply disjoint_support_comm f₁ k
|
|
|
|
|
exact rigidStabilizer_support.mp f₁_in_rist_W
|
|
|
|
|
rw [<-smulImage_eq_of_smul_eq h₂]
|
|
|
|
|
exact disjoint_img_W
|
|
|
|
|
let ⟨z, z_in_W, z_moved⟩ := faithful_rigid_stabilizer_moves_point f₁_in_rist_W f₁_ne_one
|
|
|
|
|
|
|
|
|
|
by_contra h₅
|
|
|
|
|
rw [<-h₄ z z_in_W] at z_moved
|
|
|
|
|
have h₆ : ⁅f₁, ⁅f₂, h⁆⁆ • z = z := by rw [h₅, one_smul]
|
|
|
|
|
exact z_moved h₆
|
|
|
|
|
#align proposition_1_1_1 Rubin.proposition_1_1_1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- TODO: move to Rubin.lean
|
|
|
|
|
lemma moves_1234_of_moves_12 {g : G} {x : α} (g12_moves : g^12 • x ≠ x) :
|
|
|
|
|
Function.Injective (fun i : Fin 5 => g^(i : ℤ) • x) :=
|
|
|
|
|
by
|
|
|
|
|
apply moves_inj
|
|
|
|
|
intros k k_ge_1 k_lt_5
|
|
|
|
|
simp at k_lt_5
|
|
|
|
|
|
|
|
|
|
by_contra x_fixed
|
|
|
|
|
have k_div_12 : k ∣ 12 := by
|
|
|
|
|
-- Note: norm_num does not support ℤ.dvd yet, nor ℤ.mod, nor Int.natAbs, nor Int.div, etc.
|
|
|
|
|
have h: (12 : ℤ) = (12 : ℕ) := by norm_num
|
|
|
|
|
rw [h, Int.ofNat_dvd_right]
|
|
|
|
|
apply Nat.dvd_of_mod_eq_zero
|
|
|
|
|
|
|
|
|
|
interval_cases k
|
|
|
|
|
all_goals unfold Int.natAbs
|
|
|
|
|
all_goals norm_num
|
|
|
|
|
|
|
|
|
|
have g12_fixed : g^12 • x = x := by
|
|
|
|
|
rw [<-zpow_ofNat]
|
|
|
|
|
simp
|
|
|
|
|
rw [<-Int.mul_ediv_cancel' k_div_12]
|
|
|
|
|
have res := smul_zpow_eq_of_smul_eq (12/k) x_fixed
|
|
|
|
|
group_action at res
|
|
|
|
|
exact res
|
|
|
|
|
|
|
|
|
|
exact g12_moves g12_fixed
|
|
|
|
|
|
|
|
|
|
lemma proposition_1_1_2 [T2Space α] [h_lm : LocallyMoving G α]
|
|
|
|
|
(f g : G) (h_disj : AlgebraicallyDisjoint f g) : Disjoint (Support α f) (Support α (g^12)) :=
|
|
|
|
|
by
|
|
|
|
|
by_contra not_disjoint
|
|
|
|
|
let U := Support α f ∩ Support α (g^12)
|
|
|
|
|
have U_nonempty : U.Nonempty := by
|
|
|
|
|
apply Set.not_disjoint_iff_nonempty_inter.mp
|
|
|
|
|
exact not_disjoint
|
|
|
|
|
|
|
|
|
|
-- Since G is Hausdorff, we can find a nonempty set V ⊆ such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint
|
|
|
|
|
let x := U_nonempty.some
|
|
|
|
|
have x_in_U : x ∈ U := Set.Nonempty.some_mem U_nonempty
|
|
|
|
|
have fx_moves : f • x ≠ x := Set.inter_subset_left _ _ x_in_U
|
|
|
|
|
|
|
|
|
|
have five_points : Function.Injective (fun i : Fin 5 => g^(i : ℤ) • x) := by
|
|
|
|
|
apply moves_1234_of_moves_12
|
|
|
|
|
exact (Set.inter_subset_right _ _ x_in_U)
|
|
|
|
|
have U_open: IsOpen U := (IsOpen.inter (support_open f) (support_open (g^12)))
|
|
|
|
|
|
|
|
|
|
let ⟨V₀, V₀_open, x_in_V₀, V₀_in_support, disjoint_img_V₀⟩ := disjoint_nbhd_in U_open x_in_U fx_moves
|
|
|
|
|
let ⟨V₁, V₁_open, x_in_V₁, disjoint_img_V₁⟩ := disjoint_nbhd_fin five_points
|
|
|
|
|
|
|
|
|
|
let V := V₀ ∩ V₁
|
|
|
|
|
-- Let h be a nontrivial element of the RigidStabilizer G V
|
|
|
|
|
let ⟨h, ⟨h_in_ristV, h_ne_one⟩⟩ := h_lm.get_nontrivial_rist_elem (IsOpen.inter V₀_open V₁_open) (Set.nonempty_of_mem ⟨x_in_V₀, x_in_V₁⟩)
|
|
|
|
|
|
|
|
|
|
have V_disjoint_smulImage: Disjoint V (f •'' V) := by
|
|
|
|
|
apply Set.disjoint_of_subset
|
|
|
|
|
· exact Set.inter_subset_left _ _
|
|
|
|
|
· apply smulImage_subset
|
|
|
|
|
exact Set.inter_subset_left _ _
|
|
|
|
|
· exact disjoint_img_V₀
|
|
|
|
|
|
|
|
|
|
have comm_non_trivial : ¬Commute f h := by
|
|
|
|
|
by_contra comm_trivial
|
|
|
|
|
let ⟨z, z_in_V, z_moved⟩ := faithful_rigid_stabilizer_moves_point h_in_ristV h_ne_one
|
|
|
|
|
apply z_moved
|
|
|
|
|
|
|
|
|
|
nth_rewrite 2 [<-one_smul G z]
|
|
|
|
|
rw [<-commutatorElement_eq_one_iff_commute.mpr comm_trivial.symm]
|
|
|
|
|
symm
|
|
|
|
|
|
|
|
|
|
apply disjoint_support_comm h f
|
|
|
|
|
· exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
|
· exact V_disjoint_smulImage
|
|
|
|
|
· exact z_in_V
|
|
|
|
|
|
|
|
|
|
-- Since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g)
|
|
|
|
|
let alg_disj_elem := h_disj h comm_non_trivial
|
|
|
|
|
let f₁ := alg_disj_elem.fst
|
|
|
|
|
let f₂ := alg_disj_elem.snd
|
|
|
|
|
let h' := alg_disj_elem.comm_elem
|
|
|
|
|
have f₁_commutes : Commute f₁ g := alg_disj_elem.fst_commute
|
|
|
|
|
have f₂_commutes : Commute f₂ g := alg_disj_elem.snd_commute
|
|
|
|
|
have h'_commutes : Commute h' g := alg_disj_elem.comm_elem_commute
|
|
|
|
|
have h'_nontrivial : h' ≠ 1 := alg_disj_elem.comm_elem_nontrivial
|
|
|
|
|
|
|
|
|
|
have support_f₂_h : Support α ⁅f₂,h⁆ ⊆ V ∪ (f₂ •'' V) := by
|
|
|
|
|
calc
|
|
|
|
|
Support α ⁅f₂, h⁆ ⊆ Support α h ∪ (f₂ •'' Support α h) := support_comm α f₂ h
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' Support α h) := by
|
|
|
|
|
apply Set.union_subset_union_left
|
|
|
|
|
exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) := by
|
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
|
apply smulImage_subset
|
|
|
|
|
exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
|
have support_h' : Support α h' ⊆ ⋃(i : Fin 2 × Fin 2), (f₁^(i.1.val) * f₂^(i.2.val)) •'' V := by
|
|
|
|
|
rw [rewrite_Union]
|
|
|
|
|
simp (config := {zeta := false})
|
|
|
|
|
rw [<-smulImage_mul, <-smulImage_union]
|
|
|
|
|
calc
|
|
|
|
|
Support α h' ⊆ Support α ⁅f₂,h⁆ ∪ (f₁ •'' Support α ⁅f₂, h⁆) := support_comm α f₁ ⁅f₂,h⁆
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) ∪ (f₁ •'' Support α ⁅f₂, h⁆) := by
|
|
|
|
|
apply Set.union_subset_union_left
|
|
|
|
|
exact support_f₂_h
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) ∪ (f₁ •'' V ∪ (f₂ •'' V)) := by
|
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
|
apply smulImage_subset f₁
|
|
|
|
|
exact support_f₂_h
|
|
|
|
|
|
|
|
|
|
-- Since h' is nontrivial, it has at least one point p in its support
|
|
|
|
|
let ⟨p, p_moves⟩ := faithful_moves_point' α h'_nontrivial
|
|
|
|
|
-- Since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h')
|
|
|
|
|
have gi_in_support : ∀ (i: Fin 5), g^(i.val) • p ∈ Support α h' := by
|
|
|
|
|
intro i
|
|
|
|
|
rw [mem_support]
|
|
|
|
|
by_contra p_fixed
|
|
|
|
|
rw [<-mul_smul, h'_commutes.pow_right, mul_smul] at p_fixed
|
|
|
|
|
group_action at p_fixed
|
|
|
|
|
exact p_moves p_fixed
|
|
|
|
|
|
|
|
|
|
-- The next section gets tricky, so let us clear away some stuff first :3
|
|
|
|
|
clear h'_commutes h'_nontrivial
|
|
|
|
|
clear V₀_open x_in_V₀ V₀_in_support disjoint_img_V₀
|
|
|
|
|
clear V₁_open x_in_V₁
|
|
|
|
|
clear five_points h_in_ristV h_ne_one V_disjoint_smulImage
|
|
|
|
|
clear support_f₂_h
|
|
|
|
|
|
|
|
|
|
-- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points,
|
|
|
|
|
-- say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂}
|
|
|
|
|
let pigeonhole : Fintype.card (Fin 5) > Fintype.card (Fin 2 × Fin 2) := by trivial
|
|
|
|
|
let choice_pred := fun (i : Fin 5) => (Set.mem_iUnion.mp (support_h' (gi_in_support i)))
|
|
|
|
|
let choice := fun (i : Fin 5) => (choice_pred i).choose
|
|
|
|
|
let ⟨i, _, j, _, i_ne_j, same_choice⟩ := Finset.exists_ne_map_eq_of_card_lt_of_maps_to
|
|
|
|
|
pigeonhole
|
|
|
|
|
(fun (i : Fin 5) _ => Finset.mem_univ (choice i))
|
|
|
|
|
|
|
|
|
|
let k := f₁^(choice i).1.val * f₂^(choice i).2.val
|
|
|
|
|
have same_k : f₁^(choice j).1.val * f₂^(choice j).2.val = k := by rw [<-same_choice]
|
|
|
|
|
have gi : g^i.val • p ∈ k •'' V := (choice_pred i).choose_spec
|
|
|
|
|
have gk : g^j.val • p ∈ k •'' V := by
|
|
|
|
|
have gk' := (choice_pred j).choose_spec
|
|
|
|
|
rw [same_k] at gk'
|
|
|
|
|
exact gk'
|
|
|
|
|
|
|
|
|
|
-- Since g^(j-i)(V) is disjoint from V and k commutes with g,
|
|
|
|
|
-- we know that g^(j−i)k(V) is disjoint from k(V),
|
|
|
|
|
-- which leads to a contradiction since g^i(p) and g^j(p) both lie in k(V).
|
|
|
|
|
|
|
|
|
|
have g_disjoint : Disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := by
|
|
|
|
|
apply smulImage_disjoint_subset (Set.inter_subset_right V₀ V₁)
|
|
|
|
|
group
|
|
|
|
|
rw [smulImage_disjoint_inv_pow]
|
|
|
|
|
group
|
|
|
|
|
apply disjoint_img_V₁
|
|
|
|
|
symm; exact i_ne_j
|
|
|
|
|
|
|
|
|
|
have k_commutes: Commute k g := by
|
|
|
|
|
apply Commute.mul_left
|
|
|
|
|
· exact f₁_commutes.pow_left _
|
|
|
|
|
· exact f₂_commutes.pow_left _
|
|
|
|
|
clear f₁_commutes f₂_commutes
|
|
|
|
|
|
|
|
|
|
have g_k_disjoint : Disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := by
|
|
|
|
|
repeat rw [smulImage_mul]
|
|
|
|
|
repeat rw [<-inv_pow]
|
|
|
|
|
repeat rw [k_commutes.symm.inv_left.pow_left]
|
|
|
|
|
repeat rw [<-smulImage_mul k]
|
|
|
|
|
repeat rw [inv_pow]
|
|
|
|
|
exact smulImage_disjoint k g_disjoint
|
|
|
|
|
|
|
|
|
|
apply Set.disjoint_left.mp g_k_disjoint
|
|
|
|
|
· rw [mem_inv_smulImage]
|
|
|
|
|
exact gi
|
|
|
|
|
· rw [mem_inv_smulImage]
|
|
|
|
|
exact gk
|
|
|
|
|
|
|
|
|
|
lemma remark_1_2 (f g : G) (h_disj : AlgebraicallyDisjoint f g): Commute f g := by
|
|
|
|
|
by_contra non_commute
|
|
|
|
|
let disj_elem := h_disj g non_commute
|
|
|
|
|
let nontrivial := disj_elem.comm_elem_nontrivial
|
|
|
|
|
|
|
|
|
|
rw [commutatorElement_eq_one_iff_commute.mpr disj_elem.snd_commute] at nontrivial
|
|
|
|
|
rw [commutatorElement_one_right] at nontrivial
|
|
|
|
|
|
|
|
|
|
tauto
|
|
|
|
|
|
|
|
|
|
end AlgebraicDisjointness
|
|
|
|
|
|
|
|
|
|
section RigidStabilizer
|
|
|
|
|
|
|
|
|
|
lemma lemma_2_2 (G: Type _) {α : Type _} [Group G] [TopologicalSpace α] [ContinuousMulAction G α] [FaithfulSMul G α]
|
|
|
|
|
[T2Space α] [h_lm : LocallyMoving G α]
|
|
|
|
|
{U : Set α} (U_open : IsOpen U) (U_nonempty : Set.Nonempty U) :
|
|
|
|
@ -196,8 +482,6 @@ by
|
|
|
|
|
rw [<-period_hg_eq_n]
|
|
|
|
|
apply Period.pow_period_fix
|
|
|
|
|
|
|
|
|
|
section proposition_2_1
|
|
|
|
|
|
|
|
|
|
-- TODO: put in a different file and introduce some QoL theorems
|
|
|
|
|
def AlgebraicSubgroup {G : Type _} [Group G] (f : G) : Set G :=
|
|
|
|
|
(fun g : G => g^12) '' { g : G | IsAlgebraicallyDisjoint f g }
|
|
|
|
@ -263,32 +547,6 @@ by
|
|
|
|
|
simp at exp_eq_zero
|
|
|
|
|
exact exp_eq_zero n n_pos
|
|
|
|
|
|
|
|
|
|
lemma Commute.inv {G : Type _} [Group G] {f g : G} : Commute f g → Commute f g⁻¹ := by
|
|
|
|
|
unfold Commute SemiconjBy
|
|
|
|
|
intro h
|
|
|
|
|
have h₁ : f = g * f * g⁻¹ := by
|
|
|
|
|
nth_rw 1 [<-mul_one f]
|
|
|
|
|
rw [<-mul_right_inv g, <-mul_assoc]
|
|
|
|
|
rw [h]
|
|
|
|
|
nth_rw 2 [h₁]
|
|
|
|
|
group
|
|
|
|
|
|
|
|
|
|
lemma Commute.inv_iff {G : Type _} [Group G] {f g : G} : Commute f g ↔ Commute f g⁻¹ := ⟨
|
|
|
|
|
Commute.inv,
|
|
|
|
|
by
|
|
|
|
|
nth_rw 2 [<-inv_inv g]
|
|
|
|
|
apply Commute.inv
|
|
|
|
|
⟩
|
|
|
|
|
|
|
|
|
|
lemma Commute.inv_iff₂ {G : Type _} [Group G] {f g : G} : Commute f g ↔ Commute f⁻¹ g := ⟨
|
|
|
|
|
Commute.symm ∘ Commute.inv_iff.mp ∘ Commute.symm,
|
|
|
|
|
Commute.symm ∘ Commute.inv_iff.mpr ∘ Commute.symm
|
|
|
|
|
⟩
|
|
|
|
|
|
|
|
|
|
lemma Commute.into {G : Type _} [Group G] {f g : G} : Commute f g → f * g = g * f := by
|
|
|
|
|
unfold Commute SemiconjBy
|
|
|
|
|
tauto
|
|
|
|
|
|
|
|
|
|
lemma proposition_2_1 {G α : Type _}
|
|
|
|
|
[Group G] [TopologicalSpace α] [ContinuousMulAction G α] [T2Space α]
|
|
|
|
|
[LocallyMoving G α] [h_faithful : FaithfulSMul G α]
|
|
|
|
@ -373,8 +631,9 @@ by
|
|
|
|
|
apply h_nc_g12
|
|
|
|
|
exact h_in_centralizer _ g12_in_algebraic_subgroup
|
|
|
|
|
|
|
|
|
|
end RigidStabilizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end proposition_2_1
|
|
|
|
|
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
|
|
|
|
|
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
|
|
|
|
|
end Rubin
|
|
|
|
|