Translate proposition 1.1.1 to lean4

pull/1/head
Shad Amethyst 7 months ago
parent 171caae2d3
commit d96318acc8

@ -22,6 +22,7 @@ import Rubin.SmulImage
import Rubin.Support import Rubin.Support
import Rubin.Topological import Rubin.Topological
import Rubin.RigidStabilizer import Rubin.RigidStabilizer
import Rubin.Period
#align_import rubin #align_import rubin
@ -42,55 +43,11 @@ section Rubin
variable {G α β : Type _} [Group G] variable {G α β : Type _} [Group G]
----------------------------------------------------------------
section Groups
def is_algebraically_disjoint (f g : G) :=
∀ h : G,
¬Commute f h →
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
#align is_algebraically_disjoint Rubin.is_algebraically_disjoint
end Groups
----------------------------------------------------------------
section Actions
variable [MulAction G α]
@[simp]
theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
MulAction.orbit (⊥ : Subgroup G) p = {p} :=
by
ext1
rw [MulAction.mem_orbit_iff]
constructor
· rintro ⟨⟨_, g_bot⟩, g_to_x⟩
rw [← g_to_x, Set.mem_singleton_iff, Subgroup.mk_smul]
exact (Subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _
exact fun h => ⟨1, Eq.trans (one_smul _ p) (Set.mem_singleton_iff.mp h).symm⟩
#align orbit_bot Rubin.orbit_bot
end Actions
---------------------------------------------------------------- ----------------------------------------------------------------
section RubinActions section RubinActions
open Topology
variable [TopologicalSpace α] [TopologicalSpace β] variable [TopologicalSpace α] [TopologicalSpace β]
-- Note: `𝓝[≠] x` is notation for `nhdsWithin x {[x]}ᶜ`, ie. the neighborhood of x not containing itself
-- TODO: make this a class?
def has_no_isolated_points (α : Type _) [TopologicalSpace α] :=
∀ x : α, 𝓝[≠] x ≠ ⊥
#align has_no_isolated_points Rubin.has_no_isolated_points
def is_locally_dense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
∀ U : Set α,
∀ p ∈ U,
p ∈ interior (closure (MulAction.orbit (RigidStabilizer G U) p))
#align is_locally_dense Rubin.is_locally_dense
structure RubinAction (G α : Type _) extends structure RubinAction (G α : Type _) extends
Group G, Group G,
TopologicalSpace α, TopologicalSpace α,
@ -100,413 +57,15 @@ where
locally_compact : LocallyCompactSpace α locally_compact : LocallyCompactSpace α
hausdorff : T2Space α hausdorff : T2Space α
no_isolated_points : Rubin.has_no_isolated_points α no_isolated_points : Rubin.has_no_isolated_points α
locallyDense : Rubin.is_locally_dense G α locallyDense : LocallyDense G α
#align rubin_action Rubin.RubinAction #align rubin_action Rubin.RubinAction
end RubinActions end RubinActions
----------------------------------------------------------------
section Rubin.Period.period
variable [MulAction G α]
noncomputable def Period.period (p : α) (g : G) : :=
sInf {n : | n > 0 ∧ g ^ n • p = p}
#align period Rubin.Period.period
theorem Period.period_le_fix {p : α} {g : G} {m : } (m_pos : m > 0)
(gmp_eq_p : g ^ m • p = p) : 0 < Rubin.Period.period p g ∧ Rubin.Period.period p g ≤ m :=
by
constructor
· by_contra h'; have period_zero : Rubin.Period.period p g = 0; linarith;
rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, h_1⟩ | h; linarith;
exact Set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩
exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩
#align period_le_fix Rubin.Period.period_le_fix
theorem Period.notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0)
(period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : , 0 < i → i < n → g ^ i • p ≠ p) :
n ≤ Rubin.Period.period p g := by
by_contra period_le
exact
(pmoves (Rubin.Period.period p g) period_pos (not_le.mp period_le))
(Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2
#align notfix_le_period Rubin.Period.notfix_le_period
theorem Period.notfix_le_period' {p : α} {g : G} {n : } (n_pos : n > 0)
(period_pos : Rubin.Period.period p g > 0)
(pmoves : ∀ i : Fin n, 0 < (i : ) → g ^ (i : ) • p ≠ p) : n ≤ Rubin.Period.period p g :=
Rubin.Period.notfix_le_period n_pos period_pos fun (i : ) (i_pos : 0 < i) (i_lt_n : i < n) =>
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
#align notfix_le_period' Rubin.Period.notfix_le_period'
theorem Period.period_neutral_eq_one (p : α) : Rubin.Period.period p (1 : G) = 1 :=
by
have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 :=
Rubin.Period.period_le_fix (by norm_num : 1 > 0)
(by group_action :
(1 : G) ^ 1 • p = p)
linarith
#align period_neutral_eq_one Rubin.Period.period_neutral_eq_one
def Period.periods (U : Set α) (H : Subgroup G) : Set :=
{n : | ∃ (p : α) (g : H), p ∈ U ∧ Rubin.Period.period (p : α) (g : G) = n}
#align periods Rubin.Period.periods
-- TODO: split into multiple lemmas
theorem Period.periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
(Rubin.Period.periods U H).Nonempty ∧
BddAbove (Rubin.Period.periods U H) ∧
∃ (m : ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p :=
by
rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩
have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by
intro p g; rw [gm_eq_one g];
group_action
have periods_nonempty : (Rubin.Period.periods U H).Nonempty := by
use 1
let p := Set.Nonempty.some U_nonempty; use p
use 1
constructor
· exact Set.Nonempty.some_mem U_nonempty
· exact Rubin.Period.period_neutral_eq_one p
have periods_bounded : BddAbove (Rubin.Period.periods U H) := by
use m; intro some_period hperiod;
rcases hperiod with ⟨p, g, hperiod⟩
rw [← hperiod.2]
exact (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).2
exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
#align period_lemma Rubin.Period.periods_lemmas
theorem Period.period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∃ (p : α) (g : H) (n : ),
p ∈ U ∧ n > 0 ∧ Rubin.Period.period (p : α) (g : G) = n ∧ n = sSup (Rubin.Period.periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
rcases Nat.sSup_mem periods_nonempty periods_bounded with ⟨p, g, hperiod⟩
use p
use g
use sSup (Rubin.Period.periods U H)
-- TODO: cleanup?
exact ⟨
hperiod.1,
hperiod.2 ▸ (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1,
hperiod.2,
rfl
#align period_from_exponent Rubin.Period.period_from_exponent
theorem Period.zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
{H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : U) (g : H),
0 < Rubin.Period.period (p : α) (g : G) ∧
Rubin.Period.period (p : α) (g : G) ≤ sSup (Rubin.Period.periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
intro p g
have period_in_periods : Rubin.Period.period (p : α) (g : G) ∈ Rubin.Period.periods U H := by
use p; use g
simp
exact
⟨(Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1,
le_csSup periods_bounded period_in_periods⟩
#align zero_lt_period_le_Sup_periods Rubin.Period.zero_lt_period_le_Sup_periods
theorem Period.pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p :=
by
cases eq_zero_or_neZero (Rubin.Period.period p g) with
| inl h => rw [h]; simp
| inr h =>
exact
(Nat.sInf_mem
(Nat.nonempty_of_pos_sInf
(Nat.pos_of_ne_zero (@NeZero.ne _ _ (Rubin.Period.period p g) h)))).2
#align pow_period_fix Rubin.Period.pow_period_fix
end Rubin.Period.period
----------------------------------------------------------------
section AlgebraicDisjointness
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] [FaithfulSMul G α]
def Disjointness.IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α]
[MulAction G α] :=
∀ U : Set α, IsOpen U → Set.Nonempty U → RigidStabilizer G U ≠ ⊥
#align is_locally_moving Rubin.Disjointness.IsLocallyMoving
-- lemma dense_locally_moving : t2_space α ∧ has_no_isolated_points α ∧ is_locally_dense G α → is_locally_moving G α := begin
-- rintros ⟨t2α,nipα,ildGα⟩ U ioU neU,
-- by_contra,
-- have some_in_U := ildGα U neU.some neU.some_mem,
-- rw [h,orbit_bot G neU.some,@closure_singleton α _ (@t2_space.t1_space α _ t2α) neU.some,@interior_singleton α _ neU.some (nipα neU.some)] at some_in_U,
-- tauto
-- end
-- lemma disjoint_nbhd {g : G} {x : α} [t2_space α] : g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ disjoint U (g •'' U) := begin
-- intro xmoved,
-- rcases t2_space.t2 (g • x) x xmoved with ⟨V,W,open_V,open_W,gx_in_V,x_in_W,disjoint_V_W⟩,
-- let U := (g⁻¹ •'' V) ∩ W,
-- use U,
-- split,
-- exact is_open.inter (img_open_open g⁻¹ V open_V) open_W,
-- split,
-- exact ⟨mem_inv_smul''.mpr gx_in_V,x_in_W⟩,
-- exact Set.disjoint_of_subset
-- (Set.inter_subset_right (g⁻¹ •'' V) W)
-- (λ y hy, smul_inv_smul g y ▸ mem_inv_smul''.mp (Set.mem_of_mem_inter_left (mem_smulImage.mp hy)) : g •'' U ⊆ V)
-- disjoint_V_W.symm
-- end
-- lemma disjoint_nbhd_in {g : G} {x : α} [t2_space α] {V : set α} : is_open V → x ∈ V → g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ U ⊆ V ∧ disjoint U (g •'' U) := begin
-- intros open_V x_in_V xmoved,
-- rcases disjoint_nbhd xmoved with ⟨W,open_W,x_in_W,disjoint_W⟩,
-- let U := W ∩ V,
-- use U,
-- split,
-- exact is_open.inter open_W open_V,
-- split,
-- exact ⟨x_in_W,x_in_V⟩,
-- split,
-- exact Set.inter_subset_right W V,
-- exact Set.disjoint_of_subset
-- (Set.inter_subset_left W V)
-- ((@smul''_inter _ _ _ _ g W V).symm ▸ Set.inter_subset_left (g •'' W) (g •'' V) : g •'' U ⊆ g •'' W)
-- disjoint_W
-- end
-- lemma rewrite_Union (f : fin 2 × fin 2 → set α) : ((i : fin 2 × fin 2), f i) = (f (0,0) f (0,1)) (f (1,0) f (1,1)) := begin
-- ext,
-- simp only [Set.mem_Union, Set.mem_union],
-- split,
-- { simp only [forall_exists_index],
-- intro i,
-- fin_cases i; simp {contextual := tt}, },
-- { rintro ((h|h)|(h|h)); exact ⟨_, h⟩, },
-- end
-- lemma proposition_1_1_1 (f g : G) (locally_moving : is_locally_moving G α) [t2_space α] : disjoint (support α f) (support α g) → is_algebraically_disjoint f g := begin
-- intros disjoint_f_g h hfh,
-- let support_f := support α f,
-- -- h is not the identity on support α f
-- cases Set.not_disjoint_iff.mp (mt (@disjoint_commute G α _ _ _ _ _) hfh) with x hx,
-- let x_in_support_f := hx.1,
-- let hx_ne_x := mem_support.mp hx.2,
-- -- so since α is Hausdoff there is V nonempty ⊆ support α f with h •'' V disjoint from V
-- rcases disjoint_nbhd_in (support_open f) x_in_support_f hx_ne_x with ⟨V,open_V,x_in_V,V_in_support,disjoint_img_V⟩,
-- let ristV_ne_bot := locally_moving V open_V (Set.nonempty_of_mem x_in_V),
-- -- let f₂ be a nontrivial element of rigid_stabilizer G V
-- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨f₂,f₂_in_ristV,f₂_ne_one⟩,
-- -- again since α is Hausdorff there is W nonempty ⊆ V with f₂ •'' W disjoint from W
-- rcases faithful_moves_point' α f₂_ne_one with ⟨y,ymoved⟩,
-- let y_in_V : y ∈ V := (rist_supported_in_set f₂_in_ristV) (mem_support.mpr ymoved),
-- rcases disjoint_nbhd_in open_V y_in_V ymoved with ⟨W,open_W,y_in_W,W_in_V,disjoint_img_W⟩,
-- -- let f₁ be a nontrivial element of rigid_stabilizer G W
-- let ristW_ne_bot := locally_moving W open_W (Set.nonempty_of_mem y_in_W),
-- rcases (or_iff_right ristW_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨f₁,f₁_in_ristW,f₁_ne_one⟩,
-- use f₁, use f₂,
-- -- note that f₁,f₂ commute with g since their support is in support α f
-- split,
-- exact disjoint_commute (Set.disjoint_of_subset_left (Set.subset.trans (Set.subset.trans (rist_supported_in_set f₁_in_ristW) W_in_V) V_in_support) disjoint_f_g),
-- split,
-- exact disjoint_commute (Set.disjoint_of_subset_left (Set.subset.trans (rist_supported_in_set f₂_in_ristV) V_in_support) disjoint_f_g),
-- -- we claim that [f₁,[f₂,h]] is a nontrivial element of centralizer G g
-- let k := ⁅f₂,h⁆,
-- -- first, h*f₂⁻¹*h⁻¹ is supported on h V, so k := [f₂,h] agrees with f₂ on V
-- have h2 : ∀z ∈ W, f₂•z = k•z := λ z z_in_W,
-- (disjoint_support_comm f₂ h (rist_supported_in_set f₂_in_ristV) disjoint_img_V z (W_in_V z_in_W)).symm,
-- -- then k*f₁⁻¹*k⁻¹ is supported on k W = f₂ W, so [f₁,k] is supported on W f₂ W ⊆ V ⊆ support f, so commutes with g.
-- have h3 : support α ⁅f₁,k⁆ ⊆ support α f := begin
-- let := (support_comm α k f₁).trans (Set.union_subset_union (rist_supported_in_set f₁_in_ristW) (smul''_subset k $ rist_supported_in_set f₁_in_ristW)),
-- rw [← commutator_element_inv,support_inv,(smul''_eq_of_smul_eq h2).symm] at this,
-- exact (this.trans $ (Set.union_subset_union W_in_V (moves_subset_within_support f₂ W V W_in_V $ rist_supported_in_set f₂_in_ristV)).trans $ eq.subset V.union_self).trans V_in_support
-- end,
-- split,
-- exact disjoint_commute (Set.disjoint_of_subset_left h3 disjoint_f_g),
-- -- finally, [f₁,k] agrees with f₁ on W, so is not the identity.
-- have h4 : ∀z ∈ W, ⁅f₁,k⁆•z = f₁•z :=
-- disjoint_support_comm f₁ k (rist_supported_in_set f₁_in_ristW) (smul''_eq_of_smul_eq h2 ▸ disjoint_img_W),
-- rcases faithful_rist_moves_point f₁_in_ristW f₁_ne_one with ⟨z,z_in_W,z_moved⟩,
-- by_contra h5,
-- exact ((h4 z z_in_W).symm ▸ z_moved : ⁅f₁, k⁆ • z ≠ z) ((congr_arg (λg : G, g•z) h5).trans (one_smul G z)),
-- end
-- @[simp] lemma smul''_mul {g h : G} {U : set α} : g •'' (h •'' U) = (g*h) •'' U :=
-- (mul_smul'' g h U).symm
-- lemma disjoint_nbhd_fin {ι : Type*} [fintype ι] {f : ι → G} {x : α} [t2_space α] : (λi : ι, f i • x).injective → ∃U : set α, is_open U ∧ x ∈ U ∧ (∀i j : ι, i ≠ j → disjoint (f i •'' U) (f j •'' U)) := begin
-- intro f_injective,
-- let disjoint_hyp := λi j (i_ne_j : i≠j), let x_moved : ((f j)⁻¹ * f i) • x ≠ x := begin
-- by_contra,
-- let := smul_congr (f j) h,
-- rw [mul_smul, ← mul_smul,mul_right_inv,one_smul] at this,
-- from i_ne_j (f_injective this),
-- end in disjoint_nbhd x_moved,
-- let ι2 := { p : ι×ι // p.1 ≠ p.2 },
-- let U := ⋂(p : ι2), (disjoint_hyp p.1.1 p.1.2 p.2).some,
-- use U,
-- split,
-- exact is_open_Inter (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.1),
-- split,
-- exact Set.mem_Inter.mpr (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.2.1),
-- intros i j i_ne_j,
-- let U_inc := Set.Inter_subset (λ p : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some) ⟨⟨i,j⟩,i_ne_j⟩,
-- let := (disjoint_smul'' (f j) (Set.disjoint_of_subset U_inc (smul''_subset ((f j)⁻¹ * (f i)) U_inc) (disjoint_hyp i j i_ne_j).some_spec.2.2)).symm,
-- simp only [subtype.val_eq_coe, smul''_mul, mul_inv_cancel_left] at this,
-- from this
-- end
-- lemma moves_inj {g : G} {x : α} {n : } (period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- intros i j same_img,
-- by_contra i_ne_j,
-- let same_img' := congr_arg ((•) (g ^ (-(j : )))) same_img,
-- simp only [inv_smul_smul] at same_img',
-- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img',
-- simp only [add_left_neg, zpow_zero, one_smul] at same_img',
-- let ij := |(i:) - (j:)|,
-- rw ← sub_eq_add_neg at same_img',
-- have xfixed : g^ij • x = x := begin
-- cases abs_cases ((i:) - (j:)),
-- { rw ← h.1 at same_img', exact same_img' },
-- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' }
-- end,
-- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)),
-- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)),
-- rw zero_sub at neg_le,
-- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j),
-- rw sub_zero at le_pos,
-- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩,
-- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed,
-- end
-- lemma int_to_nat (k : ) (k_pos : k ≥ 1) : k = k.nat_abs := begin
-- cases (int.nat_abs_eq k),
-- { exact h },
-- { have : -(k.nat_abs : ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg,
-- rw ← h at this, by_contra, linarith }
-- end
-- lemma moves_inj_N {g : G} {x : α} {n : } (period_ge_n' : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x,
-- { intros k one_le_k k_lt_n,
-- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)),
-- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)),
-- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n,
-- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this,
-- exact this },
-- have := moves_inj period_ge_n,
-- done
-- end
-- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:) • x) := begin
-- apply moves_inj,
-- intros k k_ge_1 k_lt_5,
-- by_contra xfixed,
-- have k_div_12 : k * (12 / k) = 12 := begin
-- interval_cases using k_ge_1 k_lt_5; norm_num
-- end,
-- have veryfixed : g^12 • x = x := begin
-- let := smul_zpow_eq_of_smul_eq (12/k) xfixed,
-- rw [← zpow_mul,k_div_12] at this,
-- norm_cast at this
-- end,
-- exact xmoves veryfixed
-- end
-- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin
-- intros locally_moving alg_disjoint,
-- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty
-- by_contra not_disjoint,
-- let U := support α f ∩ support α (g^12),
-- have U_nonempty : U.nonempty := Set.not_disjoint_iff_nonempty_inter.mp not_disjoint,
-- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint
-- let x := U_nonempty.some,
-- have five_points : function.injective (λi : fin 5, g^(i:) • x) := moves_1234_of_moves_12 (mem_support.mp $ (Set.inter_subset_right _ _) U_nonempty.some_mem),
-- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((Set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩,
-- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩,
-- simp only at disjoint_img_V₁,
-- let V := V₀ ∩ V₁,
-- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V
-- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (Set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩),
-- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- have comm_non_trivial : ¬commute f h := begin
-- by_contra comm_trivial,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩,
-- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (Set.disjoint_of_subset (Set.inter_subset_left V₀ V₁) (smul''_subset f (Set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V,
-- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm,
-- exact z_moved act_comm.symm,
-- end,
-- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g)
-- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩,
-- let h' := ⁅f₁,⁅f₂,h⁆⁆,
-- -- now observe that supp([f₂, h]) ⊆ V f₂(V), and by the same reasoning supp(h')⊆Vf₁(V)f₂(V)f₁f₂(V)
-- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V (f₂ •'' V) := (support_comm α f₂ h).trans (Set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV),
-- have support_h' : support α h' ⊆ (i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin
-- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (Set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)),
-- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this,
-- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V),
-- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u,
-- exact rw_u.symm ▸ this,
-- end,
-- -- since h' is nontrivial, it has at least one point p in its support
-- cases faithful_moves_point' α h'_non_trivial with p p_moves,
-- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h')
-- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin
-- intro i,
-- rw mem_support,
-- by_contra p_fixed,
-- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed,
-- exact p_moves p_fixed,
-- end,
-- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂}
-- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial,
-- let choice := λi : fin 5, (Set.mem_Union.mp $ support_h' $ gi_in_support i).some,
-- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩,
-- clear h_1_w h_1_h_h_w pigeonhole,
-- let k := f₁^(choice i).1.val*f₂^(choice i).2.val,
-- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice,
-- rw ← same_choice },
-- have g_i : g^i.val • p ∈ k •'' V := (Set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec,
-- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (Set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec,
-- -- but since g^(ji)(V) is disjoint from V and k commutes with g, we know that g^(ji)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V).
-- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin
-- let := (disjoint_smul'' (g^(-(i.val+j.val : ))) (disjoint_img_V₁ i j i_ne_j)).symm,
-- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this,
-- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this,
-- from Set.disjoint_of_subset (smul''_subset _ (Set.inter_subset_right V₀ V₁)) (smul''_subset _ (Set.inter_subset_right V₀ V₁)) this
-- end,
-- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val),
-- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin
-- let this := disjoint_smul'' k g_disjoint,
-- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val,
-- ← (k_commutes.symm.inv_left.pow_left i.val).eq,
-- ← (k_commutes.symm.inv_left.pow_left j.val).eq,
-- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this,
-- from this
-- end,
-- exact Set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j)
-- end
-- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin
-- intro alg_disjoint,
-- by_contra non_commute,
-- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩,
-- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d,
-- tauto
-- end
-- section remark_1_3
-- def G := equiv.perm (fin 2)
-- def σ := equiv.swap (0 : fin 2) (1 : fin 2)
-- example : is_algebraically_disjoint σ σ := begin
-- intro h,
-- fin_cases h,
-- intro hyp1,
-- exfalso,
-- swap, intro hyp2, exfalso,
-- -- is commute decidable? cc,
-- sorry -- dec_trivial
-- sorry -- second sorry needed
-- end
-- end remark_1_3
end AlgebraicDisjointness
---------------------------------------------------------------- ----------------------------------------------------------------
section Rubin.RegularSupport.RegularSupport section Rubin.RegularSupport.RegularSupport
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] variable [TopologicalSpace α] [Rubin.ContinuousMulAction G α]
def RegularSupport.InteriorClosure (U : Set α) := def RegularSupport.InteriorClosure (U : Set α) :=
interior (closure U) interior (closure U)
@ -563,7 +122,7 @@ theorem RegularSupport.regularSupport_regular {g : G} :
theorem RegularSupport.support_subset_regularSupport [T2Space α] (g : G) : theorem RegularSupport.support_subset_regularSupport [T2Space α] (g : G) :
Support α g ⊆ Rubin.RegularSupport.RegularSupport α g := Support α g ⊆ Rubin.RegularSupport.RegularSupport α g :=
Rubin.RegularSupport.IsOpen.interiorClosure_subset (Rubin.Topological.support_open g) Rubin.RegularSupport.IsOpen.interiorClosure_subset (Rubin.support_open g)
#align support_in_regular_support Rubin.RegularSupport.support_subset_regularSupport #align support_in_regular_support Rubin.RegularSupport.support_subset_regularSupport
theorem RegularSupport.mem_regularSupport (g : G) (U : Set α) : theorem RegularSupport.mem_regularSupport (g : G) (U : Set α) :
@ -575,7 +134,7 @@ theorem RegularSupport.mem_regularSupport (g : G) (U : Set α) :
-- FIXME: Weird naming? -- FIXME: Weird naming?
def RegularSupport.AlgebraicCentralizer (f : G) : Set G := def RegularSupport.AlgebraicCentralizer (f : G) : Set G :=
{h | ∃ g, h = g ^ 12 ∧ Rubin.is_algebraically_disjoint f g} {h | ∃ g, h = g ^ 12 ∧ AlgebraicallyDisjoint f g}
#align algebraic_centralizer Rubin.RegularSupport.AlgebraicCentralizer #align algebraic_centralizer Rubin.RegularSupport.AlgebraicCentralizer
end Rubin.RegularSupport.RegularSupport end Rubin.RegularSupport.RegularSupport

@ -0,0 +1,399 @@
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.Subgroup.Actions
import Mathlib.Topology.Basic
import Mathlib.Tactic.FinCases
import Rubin.RigidStabilizer
import Rubin.SmulImage
import Rubin.Topological
import Rubin.FaithfulAction
namespace Rubin
class LocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
locally_moving: ∀ U : Set α, IsOpen U → Set.Nonempty U → RigidStabilizer G U ≠ ⊥
#align is_locally_moving Rubin.LocallyMoving
namespace LocallyMoving
theorem get_nontrivial_rist_elem {G α : Type _}
[Group G]
[TopologicalSpace α]
[MulAction G α]
[h_lm : LocallyMoving G α]
{U: Set α}
(U_open : IsOpen U)
(U_nonempty : U.Nonempty) :
∃ x : G, x ∈ RigidStabilizer G U ∧ x ≠ 1 :=
by
have rist_ne_bot := h_lm.locally_moving U U_open U_nonempty
exact (or_iff_right rist_ne_bot).mp (Subgroup.bot_or_exists_ne_one _)
end LocallyMoving
def AlgebraicallyDisjoint {G : Type _} [Group G] (f g : G) :=
∀ h : G,
¬Commute f h →
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
#align is_algebraically_disjoint Rubin.AlgebraicallyDisjoint
@[simp]
theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
MulAction.orbit (⊥ : Subgroup G) p = {p} :=
by
ext1
rw [MulAction.mem_orbit_iff]
constructor
· rintro ⟨⟨_, g_bot⟩, g_to_x⟩
rw [← g_to_x, Set.mem_singleton_iff, Subgroup.mk_smul]
exact (Subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _
exact fun h => ⟨1, Eq.trans (one_smul _ p) (Set.mem_singleton_iff.mp h).symm⟩
#align orbit_bot Rubin.orbit_bot
variable {G α : Type _}
variable [Group G]
variable [TopologicalSpace α]
variable [ContinuousMulAction G α]
variable [FaithfulSMul G α]
instance dense_locally_moving [T2Space α]
(H_nip : has_no_isolated_points α)
(H_ld : LocallyDense G α) :
LocallyMoving G α
where
locally_moving := by
intros U _ H_nonempty
by_contra h_rs
have ⟨elem, ⟨_, some_in_orbit⟩⟩ := H_ld.nonEmpty H_nonempty
have H_nebot := has_no_isolated_points_neBot H_nip elem
rw [h_rs] at some_in_orbit
simp at some_in_orbit
lemma disjoint_nbhd [T2Space α] {g : G} {x : α} (x_moved: g • x ≠ x) :
∃ U: Set α, IsOpen U ∧ x ∈ U ∧ Disjoint U (g •'' U) :=
by
have ⟨V, W, V_open, W_open, gx_in_V, x_in_W, disjoint_V_W⟩ := T2Space.t2 (g • x) x x_moved
let U := (g⁻¹ •'' V) ∩ W
use U
constructor
{
-- NOTE: if this is common, then we should make a tactic for solving IsOpen goals
exact IsOpen.inter (img_open_open g⁻¹ V V_open) W_open
}
constructor
{
simp
rw [mem_inv_smulImage]
trivial
}
{
apply Set.disjoint_of_subset
· apply Set.inter_subset_right
· intro y hy; show y ∈ V
rw [<-smul_inv_smul g y]
rw [<-mem_inv_smulImage]
rw [mem_smulImage] at hy
simp at hy
exact hy.left
· exact disjoint_V_W.symm
}
lemma disjoint_nbhd_in [T2Space α] {g : G} {x : α} {V : Set α}
(V_open : IsOpen V) (x_in_V : x ∈ V) (x_moved : g • x ≠ x) :
∃ U : Set α, IsOpen U ∧ x ∈ U ∧ U ⊆ V ∧ Disjoint U (g •'' U) :=
by
have ⟨W, W_open, x_in_W, disjoint_W_img⟩ := disjoint_nbhd x_moved
use W ∩ V
simp
constructor
{
apply IsOpen.inter <;> assumption
}
constructor
{
constructor <;> assumption
}
show Disjoint (W ∩ V) (g •'' W ∩ V)
apply Set.disjoint_of_subset
· exact Set.inter_subset_left W V
· show g •'' W ∩ V ⊆ g •'' W
rewrite [smulImage_inter]
exact Set.inter_subset_left _ _
· exact disjoint_W_img
-- Kind of a boring lemma but okay
lemma rewrite_Union (f : Fin 2 × Fin 2 → Set α) :
((i : Fin 2 × Fin 2), f i) = (f (0,0) f (0,1)) (f (1,0) f (1,1)) :=
by
ext x
simp only [Set.mem_iUnion, Set.mem_union]
constructor
· rewrite [forall_exists_index]
intro i
fin_cases i
<;> simp only [Fin.zero_eta, Fin.mk_one]
<;> intro h
<;> simp only [h, true_or, or_true]
· rintro ((h|h)|(h|h)) <;> exact ⟨_, h⟩
-- TODO: modify the proof to be less "let everything"-y, especially the first half
lemma proposition_1_1_1 [h_lm : LocallyMoving G α] [T2Space α] (f g : G) (supp_disjoint : Disjoint (Support α f) (Support α g)) : AlgebraicallyDisjoint f g := by
intros h h_not_commute
-- h is not the identity on `Support α f`
have f_h_not_disjoint := (mt (disjoint_commute (G := G) (α := α)) h_not_commute)
have ⟨x, ⟨x_in_supp_f, x_in_supp_h⟩⟩ := Set.not_disjoint_iff.mp f_h_not_disjoint
have hx_ne_x := mem_support.mp x_in_supp_h
-- Since α is Hausdoff, there is a nonempty V ⊆ Support α f, with h •'' V disjoint from V
have ⟨V, V_open, x_in_V, V_in_support, disjoint_img_V⟩ := disjoint_nbhd_in (support_open f) x_in_supp_f hx_ne_x
-- let f₂ be a nontrivial element of the RigidStabilizer G V
let ⟨f₂, f₂_in_rist_V, f₂_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem x_in_V)
-- Re-use the Hausdoff property of α again, this time yielding W ⊆ V
let ⟨y, y_moved⟩ := faithful_moves_point' α f₂_ne_one
have y_in_V := (rist_supported_in_set f₂_in_rist_V) (mem_support.mpr y_moved)
let ⟨W, W_open, y_in_W, W_in_V, disjoint_img_W⟩ := disjoint_nbhd_in V_open y_in_V y_moved
-- Let f₁ be a nontrivial element of RigidStabilizer G W
let ⟨f₁, f₁_in_rist_W, f₁_ne_one⟩ := h_lm.get_nontrivial_rist_elem W_open (Set.nonempty_of_mem y_in_W)
use f₁
use f₂
constructor <;> try constructor
· apply disjoint_commute (α := α)
apply Set.disjoint_of_subset_left _ supp_disjoint
calc
Support α f₁ ⊆ W := rist_supported_in_set f₁_in_rist_W
W ⊆ V := W_in_V
V ⊆ Support α f := V_in_support
· apply disjoint_commute (α := α)
apply Set.disjoint_of_subset_left _ supp_disjoint
calc
Support α f₂ ⊆ V := rist_supported_in_set f₂_in_rist_V
V ⊆ Support α f := V_in_support
-- We claim that [f₁, [f₂, h]] is a nontrivial elelement of Centralizer G g
let k := ⁅f₂, h⁆
have h₂ : ∀ z ∈ W, f₂ • z = k • z := by
intro z z_in_W
simp
symm
apply disjoint_support_comm f₂ h _ disjoint_img_V
· exact W_in_V z_in_W
· exact rist_supported_in_set f₂_in_rist_V
constructor
· -- then `k*f₁⁻¹*k⁻¹` is supported on k W = f₂ W,
-- so [f₁,k] is supported on W f₂ W ⊆ V ⊆ support f, so commutes with g.
apply disjoint_commute (α := α)
apply Set.disjoint_of_subset_left _ supp_disjoint
have supp_f₁_subset_W := (rist_supported_in_set f₁_in_rist_W)
show Support α ⁅f₁, ⁅f₂, h⁆⁆ ⊆ Support α f
calc
Support α ⁅f₁, k⁆ = Support α ⁅k, f₁⁆ := by rw [<-commutatorElement_inv, support_inv]
_ ⊆ Support α f₁ (k •'' Support α f₁) := support_comm α k f₁
_ ⊆ W (k •'' Support α f₁) := Set.union_subset_union_left _ supp_f₁_subset_W
_ ⊆ W (k •'' W) := by
apply Set.union_subset_union_right
exact (smulImage_subset k supp_f₁_subset_W)
_ = W (f₂ •'' W) := by rw [<-smulImage_eq_of_smul_eq h₂]
_ ⊆ V (f₂ •'' W) := Set.union_subset_union_left _ W_in_V
_ ⊆ V V := by
apply Set.union_subset_union_right
apply smulImage_subset_in_support f₂ W V W_in_V
exact rist_supported_in_set f₂_in_rist_V
_ ⊆ V := by rw [Set.union_self]
_ ⊆ Support α f := V_in_support
· -- finally, [f₁,k] agrees with f₁ on W, so is not the identity.
have h₄: ∀ z ∈ W, ⁅f₁, k⁆ • z = f₁ • z := by
apply disjoint_support_comm f₁ k
exact rist_supported_in_set f₁_in_rist_W
rw [<-smulImage_eq_of_smul_eq h₂]
exact disjoint_img_W
let ⟨z, z_in_W, z_moved⟩ := faithful_rigid_stabilizer_moves_point f₁_in_rist_W f₁_ne_one
by_contra h₅
rw [<-h₄ z z_in_W] at z_moved
have h₆ : ⁅f₁, ⁅f₂, h⁆⁆ • z = z := by rw [h₅, one_smul]
exact z_moved h₆
#align proposition_1_1_1 Rubin.proposition_1_1_1
-- @[simp] lemma smul''_mul {g h : G} {U : set α} : g •'' (h •'' U) = (g*h) •'' U :=
-- (mul_smul'' g h U).symm
-- lemma disjoint_nbhd_fin {ι : Type*} [fintype ι] {f : ι → G} {x : α} [t2_space α] : (λi : ι, f i • x).injective → ∃U : set α, is_open U ∧ x ∈ U ∧ (∀i j : ι, i ≠ j → disjoint (f i •'' U) (f j •'' U)) := begin
-- intro f_injective,
-- let disjoint_hyp := λi j (i_ne_j : i≠j), let x_moved : ((f j)⁻¹ * f i) • x ≠ x := begin
-- by_contra,
-- let := smul_congr (f j) h,
-- rw [mul_smul, ← mul_smul,mul_right_inv,one_smul] at this,
-- from i_ne_j (f_injective this),
-- end in disjoint_nbhd x_moved,
-- let ι2 := { p : ι×ι // p.1 ≠ p.2 },
-- let U := ⋂(p : ι2), (disjoint_hyp p.1.1 p.1.2 p.2).some,
-- use U,
-- split,
-- exact is_open_Inter (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.1),
-- split,
-- exact Set.mem_Inter.mpr (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.2.1),
-- intros i j i_ne_j,
-- let U_inc := Set.Inter_subset (λ p : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some) ⟨⟨i,j⟩,i_ne_j⟩,
-- let := (disjoint_smul'' (f j) (Set.disjoint_of_subset U_inc (smul''_subset ((f j)⁻¹ * (f i)) U_inc) (disjoint_hyp i j i_ne_j).some_spec.2.2)).symm,
-- simp only [subtype.val_eq_coe, smul''_mul, mul_inv_cancel_left] at this,
-- from this
-- end
-- lemma moves_inj {g : G} {x : α} {n : } (period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- intros i j same_img,
-- by_contra i_ne_j,
-- let same_img' := congr_arg ((•) (g ^ (-(j : )))) same_img,
-- simp only [inv_smul_smul] at same_img',
-- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img',
-- simp only [add_left_neg, zpow_zero, one_smul] at same_img',
-- let ij := |(i:) - (j:)|,
-- rw ← sub_eq_add_neg at same_img',
-- have xfixed : g^ij • x = x := begin
-- cases abs_cases ((i:) - (j:)),
-- { rw ← h.1 at same_img', exact same_img' },
-- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' }
-- end,
-- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)),
-- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)),
-- rw zero_sub at neg_le,
-- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j),
-- rw sub_zero at le_pos,
-- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩,
-- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed,
-- end
-- lemma int_to_nat (k : ) (k_pos : k ≥ 1) : k = k.nat_abs := begin
-- cases (int.nat_abs_eq k),
-- { exact h },
-- { have : -(k.nat_abs : ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg,
-- rw ← h at this, by_contra, linarith }
-- end
-- lemma moves_inj_N {g : G} {x : α} {n : } (period_ge_n' : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x,
-- { intros k one_le_k k_lt_n,
-- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)),
-- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)),
-- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n,
-- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this,
-- exact this },
-- have := moves_inj period_ge_n,
-- done
-- end
-- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:) • x) := begin
-- apply moves_inj,
-- intros k k_ge_1 k_lt_5,
-- by_contra xfixed,
-- have k_div_12 : k * (12 / k) = 12 := begin
-- interval_cases using k_ge_1 k_lt_5; norm_num
-- end,
-- have veryfixed : g^12 • x = x := begin
-- let := smul_zpow_eq_of_smul_eq (12/k) xfixed,
-- rw [← zpow_mul,k_div_12] at this,
-- norm_cast at this
-- end,
-- exact xmoves veryfixed
-- end
-- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin
-- intros locally_moving alg_disjoint,
-- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty
-- by_contra not_disjoint,
-- let U := support α f ∩ support α (g^12),
-- have U_nonempty : U.nonempty := Set.not_disjoint_iff_nonempty_inter.mp not_disjoint,
-- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint
-- let x := U_nonempty.some,
-- have five_points : function.injective (λi : fin 5, g^(i:) • x) := moves_1234_of_moves_12 (mem_support.mp $ (Set.inter_subset_right _ _) U_nonempty.some_mem),
-- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((Set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩,
-- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩,
-- simp only at disjoint_img_V₁,
-- let V := V₀ ∩ V₁,
-- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V
-- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (Set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩),
-- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- have comm_non_trivial : ¬commute f h := begin
-- by_contra comm_trivial,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩,
-- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (Set.disjoint_of_subset (Set.inter_subset_left V₀ V₁) (smul''_subset f (Set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V,
-- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm,
-- exact z_moved act_comm.symm,
-- end,
-- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g)
-- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩,
-- let h' := ⁅f₁,⁅f₂,h⁆⁆,
-- -- now observe that supp([f₂, h]) ⊆ V f₂(V), and by the same reasoning supp(h')⊆Vf₁(V)f₂(V)f₁f₂(V)
-- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V (f₂ •'' V) := (support_comm α f₂ h).trans (Set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV),
-- have support_h' : support α h' ⊆ (i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin
-- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (Set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)),
-- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this,
-- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V),
-- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u,
-- exact rw_u.symm ▸ this,
-- end,
-- -- since h' is nontrivial, it has at least one point p in its support
-- cases faithful_moves_point' α h'_non_trivial with p p_moves,
-- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h')
-- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin
-- intro i,
-- rw mem_support,
-- by_contra p_fixed,
-- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed,
-- exact p_moves p_fixed,
-- end,
-- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂}
-- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial,
-- let choice := λi : fin 5, (Set.mem_Union.mp $ support_h' $ gi_in_support i).some,
-- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩,
-- clear h_1_w h_1_h_h_w pigeonhole,
-- let k := f₁^(choice i).1.val*f₂^(choice i).2.val,
-- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice,
-- rw ← same_choice },
-- have g_i : g^i.val • p ∈ k •'' V := (Set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec,
-- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (Set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec,
-- -- but since g^(ji)(V) is disjoint from V and k commutes with g, we know that g^(ji)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V).
-- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin
-- let := (disjoint_smul'' (g^(-(i.val+j.val : ))) (disjoint_img_V₁ i j i_ne_j)).symm,
-- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this,
-- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this,
-- from Set.disjoint_of_subset (smul''_subset _ (Set.inter_subset_right V₀ V₁)) (smul''_subset _ (Set.inter_subset_right V₀ V₁)) this
-- end,
-- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val),
-- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin
-- let this := disjoint_smul'' k g_disjoint,
-- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val,
-- ← (k_commutes.symm.inv_left.pow_left i.val).eq,
-- ← (k_commutes.symm.inv_left.pow_left j.val).eq,
-- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this,
-- from this
-- end,
-- exact Set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j)
-- end
-- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin
-- intro alg_disjoint,
-- by_contra non_commute,
-- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩,
-- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d,
-- tauto
-- end
-- section remark_1_3
-- def G := equiv.perm (fin 2)
-- def σ := equiv.swap (0 : fin 2) (1 : fin 2)
-- example : is_algebraically_disjoint σ σ := begin
-- intro h,
-- fin_cases h,
-- intro hyp1,
-- exfalso,
-- swap, intro hyp2, exfalso,
-- -- is commute decidable? cc,
-- sorry -- dec_trivial
-- sorry -- second sorry needed
-- end
-- end remark_1_3
end Rubin

@ -25,7 +25,7 @@ theorem faithful_moves_point' {g : G} (α : Type _) [MulAction G α] [FaithfulSM
#align faithful_moves_point' Rubin.faithful_moves_point' #align faithful_moves_point' Rubin.faithful_moves_point'
theorem faithful_rigid_stabilizer_moves_point {g : G} {U : Set α} : theorem faithful_rigid_stabilizer_moves_point {g : G} {U : Set α} :
g ∈ rigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x := g ∈ RigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x :=
by by
intro g_rigid g_ne_one intro g_rigid g_ne_one
let ⟨x, xmoved⟩ := Rubin.faithful_moves_point' α g_ne_one let ⟨x, xmoved⟩ := Rubin.faithful_moves_point' α g_ne_one

@ -0,0 +1,131 @@
import Mathlib.Data.Finset.Basic
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.GroupTheory.Exponent
import Rubin.Tactic
namespace Rubin.Period
variable {G a : Type _}
variable [Group G]
variable [MulAction G α]
noncomputable def period (p : α) (g : G) : :=
sInf {n : | n > 0 ∧ g ^ n • p = p}
#align period Rubin.Period.period
theorem period_le_fix {p : α} {g : G} {m : } (m_pos : m > 0)
(gmp_eq_p : g ^ m • p = p) : 0 < Rubin.Period.period p g ∧ Rubin.Period.period p g ≤ m :=
by
constructor
· by_contra h'; have period_zero : Rubin.Period.period p g = 0; linarith;
rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, h_1⟩ | h; linarith;
exact Set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩
exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩
#align period_le_fix Rubin.Period.period_le_fix
theorem notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0)
(period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : , 0 < i → i < n → g ^ i • p ≠ p) :
n ≤ Rubin.Period.period p g := by
by_contra period_le
exact
(pmoves (Rubin.Period.period p g) period_pos (not_le.mp period_le))
(Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2
#align notfix_le_period Rubin.Period.notfix_le_period
theorem notfix_le_period' {p : α} {g : G} {n : } (n_pos : n > 0)
(period_pos : Rubin.Period.period p g > 0)
(pmoves : ∀ i : Fin n, 0 < (i : ) → g ^ (i : ) • p ≠ p) : n ≤ Rubin.Period.period p g :=
Rubin.Period.notfix_le_period n_pos period_pos fun (i : ) (i_pos : 0 < i) (i_lt_n : i < n) =>
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
#align notfix_le_period' Rubin.Period.notfix_le_period'
theorem period_neutral_eq_one (p : α) : Rubin.Period.period p (1 : G) = 1 :=
by
have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 :=
Rubin.Period.period_le_fix (by norm_num : 1 > 0)
(by group_action :
(1 : G) ^ 1 • p = p)
linarith
#align period_neutral_eq_one Rubin.Period.period_neutral_eq_one
def periods (U : Set α) (H : Subgroup G) : Set :=
{n : | ∃ (p : α) (g : H), p ∈ U ∧ Rubin.Period.period (p : α) (g : G) = n}
#align periods Rubin.Period.periods
-- TODO: split into multiple lemmas
theorem periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
(Rubin.Period.periods U H).Nonempty ∧
BddAbove (Rubin.Period.periods U H) ∧
∃ (m : ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p :=
by
rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩
have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by
intro p g; rw [gm_eq_one g];
group_action
have periods_nonempty : (Rubin.Period.periods U H).Nonempty := by
use 1
let p := Set.Nonempty.some U_nonempty; use p
use 1
constructor
· exact Set.Nonempty.some_mem U_nonempty
· exact Rubin.Period.period_neutral_eq_one p
have periods_bounded : BddAbove (Rubin.Period.periods U H) := by
use m; intro some_period hperiod;
rcases hperiod with ⟨p, g, hperiod⟩
rw [← hperiod.2]
exact (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).2
exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
#align period_lemma Rubin.Period.periods_lemmas
theorem period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∃ (p : α) (g : H) (n : ),
p ∈ U ∧ n > 0 ∧ Rubin.Period.period (p : α) (g : G) = n ∧ n = sSup (Rubin.Period.periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
rcases Nat.sSup_mem periods_nonempty periods_bounded with ⟨p, g, hperiod⟩
use p
use g
use sSup (Rubin.Period.periods U H)
-- TODO: cleanup?
exact ⟨
hperiod.1,
hperiod.2 ▸ (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1,
hperiod.2,
rfl
#align period_from_exponent Rubin.Period.period_from_exponent
theorem zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
{H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : U) (g : H),
0 < Rubin.Period.period (p : α) (g : G) ∧
Rubin.Period.period (p : α) (g : G) ≤ sSup (Rubin.Period.periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
intro p g
have period_in_periods : Rubin.Period.period (p : α) (g : G) ∈ Rubin.Period.periods U H := by
use p; use g
simp
exact
⟨(Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1,
le_csSup periods_bounded period_in_periods⟩
#align zero_lt_period_le_Sup_periods Rubin.Period.zero_lt_period_le_Sup_periods
theorem pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p :=
by
cases eq_zero_or_neZero (Rubin.Period.period p g) with
| inl h => rw [h]; simp
| inr h =>
exact
(Nat.sInf_mem
(Nat.nonempty_of_pos_sInf
(Nat.pos_of_ne_zero (@NeZero.ne _ _ (Rubin.Period.period p g) h)))).2
#align pow_period_fix Rubin.Period.pow_period_fix
end Rubin.Period

@ -3,23 +3,25 @@ import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.Topology.Basic import Mathlib.Topology.Basic
import Mathlib.Topology.Homeomorph import Mathlib.Topology.Homeomorph
import Rubin.RigidStabilizer
import Rubin.MulActionExt import Rubin.MulActionExt
import Rubin.SmulImage import Rubin.SmulImage
import Rubin.Support import Rubin.Support
namespace Rubin.Topological namespace Rubin
section Continuity
class ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends class ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends
MulAction G α where MulAction G α where
continuous : ∀ g : G, Continuous (fun x: α => g • x) continuous : ∀ g : G, Continuous (fun x: α => g • x)
#align continuous_mul_action Rubin.Topological.ContinuousMulAction #align continuous_mul_action Rubin.ContinuousMulAction
-- TODO: give this a notation? -- TODO: give this a notation?
structure EquivariantHomeomorph (G α β : Type _) [Group G] [TopologicalSpace α] structure EquivariantHomeomorph (G α β : Type _) [Group G] [TopologicalSpace α]
[TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where [TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where
equivariant : is_equivariant G toFun equivariant : is_equivariant G toFun
#align equivariant_homeomorph Rubin.Topological.EquivariantHomeomorph #align equivariant_homeomorph Rubin.EquivariantHomeomorph
variable {G α β : Type _} variable {G α β : Type _}
variable [Group G] variable [Group G]
@ -29,7 +31,7 @@ theorem equivariant_fun [MulAction G α] [MulAction G β]
(h : EquivariantHomeomorph G α β) : (h : EquivariantHomeomorph G α β) :
is_equivariant G h.toFun := is_equivariant G h.toFun :=
h.equivariant h.equivariant
#align equivariant_fun Rubin.Topological.equivariant_fun #align equivariant_fun Rubin.equivariant_fun
theorem equivariant_inv [MulAction G α] [MulAction G β] theorem equivariant_inv [MulAction G α] [MulAction G β]
(h : EquivariantHomeomorph G α β) : (h : EquivariantHomeomorph G α β) :
@ -40,19 +42,19 @@ theorem equivariant_inv [MulAction G α] [MulAction G β]
let e := congr_arg h.invFun (h.equivariant g (h.invFun x)) let e := congr_arg h.invFun (h.equivariant g (h.invFun x))
rw [h.left_inv _, h.right_inv _] at e rw [h.left_inv _, h.right_inv _] at e
exact e exact e
#align equivariant_inv Rubin.Topological.equivariant_inv #align equivariant_inv Rubin.equivariant_inv
variable [Rubin.Topological.ContinuousMulAction G α] variable [Rubin.ContinuousMulAction G α]
theorem img_open_open (g : G) (U : Set α) (h : IsOpen U): IsOpen (g •'' U) := theorem img_open_open (g : G) (U : Set α) (h : IsOpen U): IsOpen (g •'' U) :=
by by
rw [Rubin.smulImage_eq_inv_preimage] rw [Rubin.smulImage_eq_inv_preimage]
exact Continuous.isOpen_preimage (Rubin.Topological.ContinuousMulAction.continuous g⁻¹) U h exact Continuous.isOpen_preimage (Rubin.ContinuousMulAction.continuous g⁻¹) U h
#align img_open_open Rubin.Topological.img_open_open #align img_open_open Rubin.img_open_open
theorem support_open (g : G) [TopologicalSpace α] [T2Space α] theorem support_open (g : G) [TopologicalSpace α] [T2Space α]
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (Support α g) := [Rubin.ContinuousMulAction G α] : IsOpen (Support α g) :=
by by
apply isOpen_iff_forall_mem_open.mpr apply isOpen_iff_forall_mem_open.mpr
intro x xmoved intro x xmoved
@ -63,9 +65,45 @@ theorem support_open (g : G) [TopologicalSpace α] [T2Space α]
disjoint_U_V disjoint_U_V
(mem_inv_smulImage.mp (Set.mem_of_mem_inter_right yW)) (mem_inv_smulImage.mp (Set.mem_of_mem_inter_right yW))
(Set.mem_of_mem_inter_left yW), (Set.mem_of_mem_inter_left yW),
IsOpen.inter open_V (Rubin.Topological.img_open_open g⁻¹ U open_U), IsOpen.inter open_V (Rubin.img_open_open g⁻¹ U open_U),
⟨x_in_V, mem_inv_smulImage.mpr gx_in_U⟩ ⟨x_in_V, mem_inv_smulImage.mpr gx_in_U⟩
#align support_open Rubin.Topological.support_open #align support_open Rubin.support_open
end Rubin.Topological end Continuity
-- TODO: come up with a name
section Other
open Topology
-- Note: `𝓝[≠] x` is notation for `nhdsWithin x {[x]}ᶜ`, ie. the neighborhood of x not containing itself
-- TODO: make this a class?
def has_no_isolated_points (α : Type _) [TopologicalSpace α] :=
∀ x : α, 𝓝[≠] x ≠ ⊥
#align has_no_isolated_points Rubin.has_no_isolated_points
instance has_no_isolated_points_neBot {α : Type _} [TopologicalSpace α] (h_nip: has_no_isolated_points α) (x: α): Filter.NeBot (𝓝[≠] x) where
ne' := h_nip x
class LocallyDense (G α : Type _) [Group G] [TopologicalSpace α] extends MulAction G α :=
isLocallyDense:
∀ U : Set α,
∀ p ∈ U,
p ∈ interior (closure (MulAction.orbit (RigidStabilizer G U) p))
#align is_locally_dense Rubin.LocallyDense
namespace LocallyDense
lemma nonEmpty {G α : Type _} [Group G] [TopologicalSpace α] [LocallyDense G α]:
∀ {U : Set α},
Set.Nonempty U →
∃ p ∈ U, p ∈ interior (closure (MulAction.orbit (RigidStabilizer G U) p)) := by
intros U H_ne
exact ⟨H_ne.some, H_ne.some_mem, LocallyDense.isLocallyDense U H_ne.some H_ne.some_mem⟩
end LocallyDense
end Other
end Rubin

Loading…
Cancel
Save