Start working on Filter.InBasis

laurent-lost-commits
Shad Amethyst 5 months ago
parent 7b4307d76c
commit e84ff177bd

@ -1312,7 +1312,7 @@ by
have univ_rigid : IsRigidSubgroup (G := G) Set.univ := by
constructor
simp [Set.eq_singleton_iff_unique_mem]
exact LocallyMoving.nontrivial_elem
exact LocallyMoving.nontrivial_elem G α
use {}
simp

@ -0,0 +1,378 @@
import Mathlib.Order.Filter.Basic
import Mathlib.Topology.Basic
import Mathlib.Topology.Bases
import Mathlib.Topology.Separation
def Filter.InBasis {α : Type _} (F : Filter α) (B : Set (Set α)) : Prop :=
∀ (S : Set α), S ∈ F → ∃ T ∈ F, T ∈ B ∧ T ⊆ S
/--
This is a formulation for prefilters in a basis that are ultra.
It is a weaker statement than regular ultrafilters,
but it allows for some nice properties, like the equivalence of cluster points and neighborhoods.
--/
structure UltrafilterInBasis {α : Type} (F : Filter α) (B : Set (Set α)) :=
in_basis : Filter.InBasis F B
ultra : ∀ (F' : Filter α), F'.InBasis B → F'.NeBot → F' ≤ F → F ≤ F'
theorem Filter.InBasis.from_hasBasis {α ι : Type _} {F : Filter α} {pi : ι → Prop} {si : ι → Set α}
(F_basis: Filter.HasBasis F pi si)
{B : Set (Set α)}
(basis_subset : ∀ i : ι, pi i → si i ∈ B) :
Filter.InBasis F B :=
by
intro S S_in_F
let ⟨i, pi_i, si_i_ss⟩ := (F_basis.mem_iff' _).mp S_in_F
use si i
repeat' apply And.intro
· rw [F_basis.mem_iff']
use i
· apply basis_subset
assumption
· assumption
variable {α : Type _} {F : Filter α} {B : Set (Set α)}
theorem Filter.InBasis.mono {C : Set (Set α)} (F_basis : F.InBasis B) (B_ss_C : B ⊆ C) :
F.InBasis C :=
by
intro S S_in_F
let ⟨T, T_in_F, T_in_B, T_ss_S⟩ := F_basis S S_in_F
use T
repeat' apply And.intro
any_goals apply B_ss_C
all_goals assumption
def Filter.InBasis.basis {α : Type _} (F : Filter α) (B : Set (Set α)): Set (Set α) :=
{ S : Set α | S ∈ F ∧ S ∈ B }
theorem Filter.InBasis.basis_subset : Filter.InBasis.basis F B ⊆ B := fun _ ⟨_, S_in_B⟩ => S_in_B
theorem Filter.InBasis.basis_nonempty (F_basis : Filter.InBasis F B): Set.Nonempty (Filter.InBasis.basis F B) :=
by
let ⟨T, T_in_F, T_in_B, _⟩ := F_basis Set.univ Filter.univ_mem
exact ⟨T, T_in_F, T_in_B⟩
theorem Filter.InBasis.basis_nonempty' (F_basis : Filter.InBasis F B): Nonempty (Filter.InBasis.basis F B) :=
by
rw [Set.nonempty_coe_sort]
exact Filter.InBasis.basis_nonempty F_basis
theorem Filter.InBasis.basis_hasBasis (F_basis : Filter.InBasis F B):
F.HasBasis (fun S => S ∈ Filter.InBasis.basis F B) id :=
by
constructor
intro T
simp [basis, and_assoc]
constructor
· intro T_in_F
exact F_basis T T_in_F
· intro ⟨S, S_in_F, _, S_ss_T⟩
exact mem_of_superset S_in_F S_ss_T
-- (map_mono : ∀ A B : Set α, A ⊆ B ↔ map A ⊆ map B) (F_basis : F.InBasis B)
def Filter.InBasis.map_basis {α β : Type _} (F : Filter α) (B : Set (Set α))
(map : Set α → Set β): Filter β :=
⨅ (S : Filter.InBasis.basis F B), Filter.principal (map S)
lemma Filter.InBasis.map_directed {β : Type _} (F_basis : F.InBasis B)
(map : Set α → Set β) (map_mono : Monotone map) :
Directed (fun S T => S ≥ T) fun S : Filter.InBasis.basis F B => Filter.principal (map S.val) :=
by
intro ⟨S, S_in_F, S_in_B⟩ ⟨T, T_in_F, T_in_B⟩
have S_int_T_in_F : S ∩ T ∈ F := inter_mem S_in_F T_in_F
let ⟨U, U_in_F, U_in_B, U_ss_ST⟩ := F_basis _ S_int_T_in_F
let ⟨U_ss_S, U_ss_T⟩ := Set.subset_inter_iff.mp U_ss_ST
use ⟨U, U_in_F, U_in_B⟩
simp
constructor <;> apply map_mono <;> assumption
theorem Filter.InBasis.map_basis_neBot {β : Type _} [Nonempty β] (F_basis : F.InBasis B)
(map : Set α → Set β) (map_mono : Monotone map) (map_nonempty : ∀ S ∈ B, Set.Nonempty (map S)) :
Filter.NeBot (Filter.InBasis.map_basis F B map) :=
by
apply Filter.iInf_neBot_of_directed
· exact Filter.InBasis.map_directed F_basis map map_mono
· intro ⟨S, S_in_F, S_in_B⟩
simp
exact map_nonempty _ S_in_B
theorem Filter.InBasis.map_basis_hasBasis {β : Type _} [Nonempty β] (F_basis : F.InBasis B)
(map : Set α → Set β) (map_mono : Monotone map):
(Filter.InBasis.map_basis F B map).HasBasis (fun T : Set α => T ∈ F ∧ T ∈ B) map :=
by
unfold map_basis
constructor
intro T
have basis_nonempty := Filter.InBasis.basis_nonempty' F_basis
rw [Filter.mem_iInf_of_directed]
· simp [basis, <-and_assoc]
· exact Filter.InBasis.map_directed F_basis map map_mono
theorem Filter.InBasis.map_basis_inBasis (F_basis : Filter.InBasis F B)
(map : Set α → Set β) (map_mono : Monotone map) (map_nonempty : ∀ S ∈ B, Set.Nonempty (map S)) :
(Filter.InBasis.map_basis F B map).InBasis (map '' B) :=
by
intro S S_in_map
have β_nonempty : Nonempty β := by
let ⟨T, _, T_in_B⟩ := Filter.InBasis.basis_nonempty' F_basis
let ⟨x, _⟩ := map_nonempty T T_in_B
use x
have has_basis := Filter.InBasis.map_basis_hasBasis F_basis map map_mono
rw [has_basis.mem_iff'] at S_in_map
let ⟨T, ⟨T_in_F, T_in_B⟩, mapT_ss_S⟩ := S_in_map
use map T
repeat' apply And.intro
· rw [has_basis.mem_iff']
use T
· simp
use T
· assumption
theorem nhds_in_basis [TopologicalSpace α] (p : α) (B_basis : TopologicalSpace.IsTopologicalBasis B):
(nhds p).InBasis B :=
Filter.InBasis.from_hasBasis B_basis.nhds_hasBasis (fun _ ⟨in_B, _⟩ => in_B)
instance Filter.InBasis.order_bot : OrderBot { F : Filter α // F.InBasis B F = ⊥ } where
bot := ⟨⊥, by right; rfl ⟩
bot_le := by
intro ⟨F, _⟩
simp
theorem Filter.InBasis.inf {F₁ F₂ : Filter α}
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(F₁_basis : F₁.InBasis B) (F₂_basis : F₂.InBasis B) (nebot : Filter.NeBot (F₁ ⊓ F₂)):
Filter.InBasis (F₁ ⊓ F₂) B :=
by
intro T T_in_inf
let ⟨T₁, T₁_in_F₁, T₂, T₂_in_F₂, T_eq⟩ := Filter.mem_inf_iff.mp T_in_inf
let ⟨S₁, S₁_in_F₁, S₁_in_B, S₁_ss_T₁⟩ := F₁_basis T₁ T₁_in_F₁
let ⟨S₂, S₂_in_F₂, S₂_in_B, S₂_ss_T₂⟩ := F₂_basis T₂ T₂_in_F₂
let S := S₁ ∩ S₂
have S_in_inf : S ∈ F₁ ⊓ F₂ := by
rw [Filter.mem_inf_iff]
exact ⟨S₁, S₁_in_F₁, S₂, S₂_in_F₂, rfl⟩
use S
repeat' apply And.intro
· assumption
· apply basis_closed S₁ S₂ S₁_in_B S₂_in_B
apply Filter.nonempty_of_mem S_in_inf
· rw [T_eq]
exact Set.inter_subset_inter S₁_ss_T₁ S₂_ss_T₂
theorem Finset.Nonempty.induction {α : Type*} {p : ∀ (F : Finset α), F.Nonempty → Prop} [DecidableEq α] (initial : ∀ a : α, p {a} (Finset.singleton_nonempty a))
(insert : ∀ ⦃a : α⦄ {s : Finset α} (ne : s.Nonempty), a ∉ s → p s ne → p (insert a s) (Finset.insert_nonempty _ _)) : ∀ s, ∀ ne : s.Nonempty, p s ne :=
by
intro S S_nonempty
apply Finset.Nonempty.cons_induction
exact initial
intro a s a_notin_s s_nonempty p_rec
simp
apply insert <;> assumption
theorem Finset.Nonempty.induction_on' {α : Type*} {p : ∀ (F : Finset α), F.Nonempty → Prop} [DecidableEq α] {I : Finset α} (I_nonempty : I.Nonempty)
(initial : ∀ a : α, a ∈ I → p {a} (Finset.singleton_nonempty a))
(insert : ∀ ⦃a : α⦄ {s : Finset α} (ne : s.Nonempty), a ∈ I → a ∉ s → (s ⊆ I) → p s ne → p (insert a s) (Finset.insert_nonempty _ _)) :
p I I_nonempty :=
by
suffices ∀ (s : Finset α) (ne : Finset.Nonempty s), s ⊆ I → p s ne by
exact this I I_nonempty (subset_refl _)
apply Finset.Nonempty.induction
· simp only [singleton_subset_iff]
exact initial
· intro a s ne a_notin_s h_ind insert_subset
have ⟨a_in_I, s_ss_I⟩ := Finset.insert_subset_iff.mp insert_subset
specialize h_ind s_ss_I
apply insert <;> try assumption
theorem Filter.InBasis.sInf_finset_closed
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(I : Finset (Filter α))
(I_nonempty : Finset.Nonempty I)
(in_basis : ∀ (F : Filter α), F ∈ I → F.InBasis B)
(inf_nebot : Filter.NeBot (⨅ f ∈ I, f)) :
Filter.InBasis (sInf I) B := by
rw [sInf_eq_iInf]
have dec_eq: DecidableEq (Filter α) := Classical.typeDecidableEq _
apply Finset.Nonempty.induction_on' I_nonempty (p := fun i _ => InBasis (⨅ a ∈ i, a) B)
· simp
exact in_basis
· intro F I' _ F_in_I _ I'_ss_I I'_basis
simp only [Finset.mem_insert_coe]
rw [iInf_insert (s := I') (b := F)]
apply Filter.InBasis.inf basis_closed _ I'_basis
· simp only [<-Finset.mem_coe]
show NeBot (id F ⊓ ⨅ f ∈ (I' : Set (Filter α)), id f)
rw [<-iInf_insert]
apply Filter.neBot_of_le (f := ⨅ f ∈ I, f)
simp only [id_eq, <-Finset.mem_coe]
apply iInf_le_iInf_of_subset
exact Set.insert_subset F_in_I I'_ss_I
· exact in_basis _ F_in_I
theorem Filter.InBasis.sInf_closed
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(I : Set (Filter α))
(I_nonempty : I.Nonempty)
(in_basis : ∀ (F : Filter α), F ∈ I → F.InBasis B)
(inf_nebot : Filter.NeBot (⨅ f ∈ I, f)) :
Filter.InBasis (sInf I) B :=
by
rw [sInf_eq_iInf]
have iInf_I_eq := iInf_subtype (p := fun x => x ∈ I) (f := fun x => x.val)
simp only at iInf_I_eq
intro T T_in_sinf
rw [<-iInf_I_eq] at T_in_sinf
rw [Filter.mem_iInf_finite] at T_in_sinf
let ⟨S, T_in_inf⟩ := T_in_sinf
clear T_in_sinf
have dec_eq: DecidableEq (Filter α) := Classical.typeDecidableEq _
let S' := Finset.image (Subtype.val) S
have S'_eq : ⨅ i ∈ S, i.val = sInf S' := by
rw [sInf_eq_iInf]
simp
rw [iInf_subtype]
by_cases S_empty? : S.Nonempty
swap
{
rw [Finset.not_nonempty_iff_eq_empty] at S_empty?
rw [S_empty?] at T_in_inf
simp at T_in_inf
let ⟨F, F_in_I⟩ := I_nonempty
rw [T_in_inf]
simp
let ⟨U, U_in_F, U_in_B, _⟩ := in_basis F F_in_I Set.univ Filter.univ_mem
use U
constructor
· rw [<-iInf_I_eq]
apply Filter.mem_iInf_of_mem ⟨F, F_in_I⟩
exact U_in_F
· assumption
}
have S_basis : Filter.InBasis (⨅ i ∈ S, i.val) B := by
rw [S'_eq]
apply Filter.InBasis.sInf_finset_closed basis_closed
· simp
assumption
· unfold_let
simp only [Finset.mem_image]
intro F ⟨F', _, F'_eq⟩
apply in_basis
rw [<-F'_eq]
exact Subtype.mem F'
· simp only [<-Finset.mem_coe]
apply Filter.neBot_of_le (f := ⨅ f ∈ I, f)
apply iInf_le_iInf_of_subset
simp
have S_inf_le_I_inf : ⨅ i ∈ I, i ≤ ⨅ i ∈ S, i.val := by
rw [S'_eq, sInf_eq_iInf]
apply iInf_le_iInf_of_subset
simp
let ⟨U, U_in_inf, U_in_B, U_ss_T⟩ := S_basis T T_in_inf
use U
repeat' apply And.intro
apply S_inf_le_I_inf
all_goals assumption
theorem Filter.InBasis.is_atomic
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
: IsAtomic { F : Filter α // F.InBasis B F = ⊥ } := by
by_cases α_nonempty? : Nonempty α
swap
{
rw [not_nonempty_iff] at α_nonempty?
constructor
intro ⟨F, _⟩
left
simp
exact filter_eq_bot_of_isEmpty F
}
apply IsAtomic.of_isChain_bounded
intro ch ch_chain ch_nonempty bot_notin_ch
let ch' : Set (Filter α) := { F : Filter α | ∃ F' ∈ ch, F'.val = F }
have ch'_chain : IsChain (fun x y => x ≥ y) ch' := by
intro f f_in_ch' g g_in_ch' f_ne_g
let ⟨f', f'_in_ch, f'_eq⟩ := f_in_ch'
let ⟨g', g'_in_ch, g'_eq⟩ := g_in_ch'
rw [<-f'_eq, <-g'_eq]
simp
have f'_ne_g' : f' ≠ g' := by
intro eq
rw [eq] at f'_eq
rw [<-f'_eq, <-g'_eq] at f_ne_g
exact f_ne_g rfl
symm at f'_ne_g'
apply ch_chain <;> assumption
have bot_notin_ch' : ⊥ ∉ ch' := by
intro ⟨f, f_in_ch, f_eq_bot⟩
simp at f_eq_bot
rw [f_eq_bot] at f_in_ch
exact bot_notin_ch f_in_ch
let sch := sInf ch'
have sch_neBot : Filter.NeBot sch := by
apply Filter.sInf_neBot_of_directed
apply ch'_chain.directedOn
exact bot_notin_ch'
have sch_basis : InBasis sch B := by
apply Filter.InBasis.sInf_closed basis_closed
· let ⟨x, x_in_ch⟩ := ch_nonempty
use x
simp only [Subtype.exists, exists_and_right, exists_eq_right, Set.mem_setOf_eq,
Subtype.coe_eta, or_true, exists_prop]
exact ⟨x.prop, x_in_ch⟩
· intro F F_in_ch
simp at F_in_ch
let ⟨F_basis, F_in_ch⟩ := F_in_ch
apply F_basis.elim id
intro F_eq_bot
exfalso
simp [F_eq_bot] at F_in_ch
exact bot_notin_ch F_in_ch
· rw [<-sInf_eq_iInf]
exact sch_neBot
let sch' : { F // InBasis F B F = ⊥ } := ⟨sch, Or.intro_left _ sch_basis⟩
have sch'_ne_bot : sch' ≠ ⊥ := by
unfold_let
intro eq_bot
rw [Subtype.mk_eq_bot_iff] at eq_bot
apply sch_neBot.ne
exact eq_bot
right; rfl
use sch'
use sch'_ne_bot
unfold lowerBounds
simp
intro F F_basis F_in_ch
apply sInf_le
simp
use F_basis
-- TODO: define UltrafilterInBasis.of :)
Loading…
Cancel
Save