You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/AlgebraicDisjointness.lean

457 lines
21 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.Subgroup.Actions
import Mathlib.Topology.Basic
import Mathlib.Tactic.FinCases
import Rubin.RigidStabilizer
import Rubin.SmulImage
import Rubin.Topological
import Rubin.FaithfulAction
namespace Rubin
class LocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
locally_moving: ∀ U : Set α, IsOpen U → Set.Nonempty U → RigidStabilizer G U ≠ ⊥
#align is_locally_moving Rubin.LocallyMoving
namespace LocallyMoving
theorem get_nontrivial_rist_elem {G α : Type _}
[Group G]
[TopologicalSpace α]
[MulAction G α]
[h_lm : LocallyMoving G α]
{U: Set α}
(U_open : IsOpen U)
(U_nonempty : U.Nonempty) :
∃ x : G, x ∈ RigidStabilizer G U ∧ x ≠ 1 :=
by
have rist_ne_bot := h_lm.locally_moving U U_open U_nonempty
exact (or_iff_right rist_ne_bot).mp (Subgroup.bot_or_exists_ne_one _)
end LocallyMoving
def AlgebraicallyDisjoint {G : Type _} [Group G] (f g : G) :=
∀ h : G,
¬Commute f h →
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
#align is_algebraically_disjoint Rubin.AlgebraicallyDisjoint
@[simp]
theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
MulAction.orbit (⊥ : Subgroup G) p = {p} :=
by
ext1
rw [MulAction.mem_orbit_iff]
constructor
· rintro ⟨⟨_, g_bot⟩, g_to_x⟩
rw [← g_to_x, Set.mem_singleton_iff, Subgroup.mk_smul]
exact (Subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _
exact fun h => ⟨1, Eq.trans (one_smul _ p) (Set.mem_singleton_iff.mp h).symm⟩
#align orbit_bot Rubin.orbit_bot
variable {G α : Type _}
variable [Group G]
variable [TopologicalSpace α]
variable [ContinuousMulAction G α]
variable [FaithfulSMul G α]
instance dense_locally_moving [T2Space α]
(H_nip : has_no_isolated_points α)
(H_ld : LocallyDense G α) :
LocallyMoving G α
where
locally_moving := by
intros U _ H_nonempty
by_contra h_rs
have ⟨elem, ⟨_, some_in_orbit⟩⟩ := H_ld.nonEmpty H_nonempty
have H_nebot := has_no_isolated_points_neBot H_nip elem
rw [h_rs] at some_in_orbit
simp at some_in_orbit
lemma disjoint_nbhd [T2Space α] {g : G} {x : α} (x_moved: g • x ≠ x) :
∃ U: Set α, IsOpen U ∧ x ∈ U ∧ Disjoint U (g •'' U) :=
by
have ⟨V, W, V_open, W_open, gx_in_V, x_in_W, disjoint_V_W⟩ := T2Space.t2 (g • x) x x_moved
let U := (g⁻¹ •'' V) ∩ W
use U
constructor
{
-- NOTE: if this is common, then we should make a tactic for solving IsOpen goals
exact IsOpen.inter (img_open_open g⁻¹ V V_open) W_open
}
constructor
{
simp
rw [mem_inv_smulImage]
trivial
}
{
apply Set.disjoint_of_subset
· apply Set.inter_subset_right
· intro y hy; show y ∈ V
rw [<-smul_inv_smul g y]
rw [<-mem_inv_smulImage]
rw [mem_smulImage] at hy
simp at hy
exact hy.left
· exact disjoint_V_W.symm
}
lemma disjoint_nbhd_in [T2Space α] {g : G} {x : α} {V : Set α}
(V_open : IsOpen V) (x_in_V : x ∈ V) (x_moved : g • x ≠ x) :
∃ U : Set α, IsOpen U ∧ x ∈ U ∧ U ⊆ V ∧ Disjoint U (g •'' U) :=
by
have ⟨W, W_open, x_in_W, disjoint_W_img⟩ := disjoint_nbhd x_moved
use W ∩ V
simp
constructor
{
apply IsOpen.inter <;> assumption
}
constructor
{
constructor <;> assumption
}
show Disjoint (W ∩ V) (g •'' W ∩ V)
apply Set.disjoint_of_subset
· exact Set.inter_subset_left W V
· show g •'' W ∩ V ⊆ g •'' W
rewrite [smulImage_inter]
exact Set.inter_subset_left _ _
· exact disjoint_W_img
-- Kind of a boring lemma but okay
lemma rewrite_Union (f : Fin 2 × Fin 2 → Set α) :
((i : Fin 2 × Fin 2), f i) = (f (0,0) f (0,1)) (f (1,0) f (1,1)) :=
by
ext x
simp only [Set.mem_iUnion, Set.mem_union]
constructor
· rewrite [forall_exists_index]
intro i
fin_cases i
<;> simp only [Fin.zero_eta, Fin.mk_one]
<;> intro h
<;> simp only [h, true_or, or_true]
· rintro ((h|h)|(h|h)) <;> exact ⟨_, h⟩
-- TODO: modify the proof to be less "let everything"-y, especially the first half
lemma proposition_1_1_1 [h_lm : LocallyMoving G α] [T2Space α] (f g : G) (supp_disjoint : Disjoint (Support α f) (Support α g)) : AlgebraicallyDisjoint f g := by
intros h h_not_commute
-- h is not the identity on `Support α f`
have f_h_not_disjoint := (mt (disjoint_commute (G := G) (α := α)) h_not_commute)
have ⟨x, ⟨x_in_supp_f, x_in_supp_h⟩⟩ := Set.not_disjoint_iff.mp f_h_not_disjoint
have hx_ne_x := mem_support.mp x_in_supp_h
-- Since α is Hausdoff, there is a nonempty V ⊆ Support α f, with h •'' V disjoint from V
have ⟨V, V_open, x_in_V, V_in_support, disjoint_img_V⟩ := disjoint_nbhd_in (support_open f) x_in_supp_f hx_ne_x
-- let f₂ be a nontrivial element of the RigidStabilizer G V
let ⟨f₂, f₂_in_rist_V, f₂_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem x_in_V)
-- Re-use the Hausdoff property of α again, this time yielding W ⊆ V
let ⟨y, y_moved⟩ := faithful_moves_point' α f₂_ne_one
have y_in_V := (rist_supported_in_set f₂_in_rist_V) (mem_support.mpr y_moved)
let ⟨W, W_open, y_in_W, W_in_V, disjoint_img_W⟩ := disjoint_nbhd_in V_open y_in_V y_moved
-- Let f₁ be a nontrivial element of RigidStabilizer G W
let ⟨f₁, f₁_in_rist_W, f₁_ne_one⟩ := h_lm.get_nontrivial_rist_elem W_open (Set.nonempty_of_mem y_in_W)
use f₁
use f₂
constructor <;> try constructor
· apply disjoint_commute (α := α)
apply Set.disjoint_of_subset_left _ supp_disjoint
calc
Support α f₁ ⊆ W := rist_supported_in_set f₁_in_rist_W
W ⊆ V := W_in_V
V ⊆ Support α f := V_in_support
· apply disjoint_commute (α := α)
apply Set.disjoint_of_subset_left _ supp_disjoint
calc
Support α f₂ ⊆ V := rist_supported_in_set f₂_in_rist_V
V ⊆ Support α f := V_in_support
-- We claim that [f₁, [f₂, h]] is a nontrivial elelement of Centralizer G g
let k := ⁅f₂, h⁆
have h₂ : ∀ z ∈ W, f₂ • z = k • z := by
intro z z_in_W
simp
symm
apply disjoint_support_comm f₂ h _ disjoint_img_V
· exact W_in_V z_in_W
· exact rist_supported_in_set f₂_in_rist_V
constructor
· -- then `k*f₁⁻¹*k⁻¹` is supported on k W = f₂ W,
-- so [f₁,k] is supported on W f₂ W ⊆ V ⊆ support f, so commutes with g.
apply disjoint_commute (α := α)
apply Set.disjoint_of_subset_left _ supp_disjoint
have supp_f₁_subset_W := (rist_supported_in_set f₁_in_rist_W)
show Support α ⁅f₁, ⁅f₂, h⁆⁆ ⊆ Support α f
calc
Support α ⁅f₁, k⁆ = Support α ⁅k, f₁⁆ := by rw [<-commutatorElement_inv, support_inv]
_ ⊆ Support α f₁ (k •'' Support α f₁) := support_comm α k f₁
_ ⊆ W (k •'' Support α f₁) := Set.union_subset_union_left _ supp_f₁_subset_W
_ ⊆ W (k •'' W) := by
apply Set.union_subset_union_right
exact (smulImage_subset k supp_f₁_subset_W)
_ = W (f₂ •'' W) := by rw [<-smulImage_eq_of_smul_eq h₂]
_ ⊆ V (f₂ •'' W) := Set.union_subset_union_left _ W_in_V
_ ⊆ V V := by
apply Set.union_subset_union_right
apply smulImage_subset_in_support f₂ W V W_in_V
exact rist_supported_in_set f₂_in_rist_V
_ ⊆ V := by rw [Set.union_self]
_ ⊆ Support α f := V_in_support
· -- finally, [f₁,k] agrees with f₁ on W, so is not the identity.
have h₄: ∀ z ∈ W, ⁅f₁, k⁆ • z = f₁ • z := by
apply disjoint_support_comm f₁ k
exact rist_supported_in_set f₁_in_rist_W
rw [<-smulImage_eq_of_smul_eq h₂]
exact disjoint_img_W
let ⟨z, z_in_W, z_moved⟩ := faithful_rigid_stabilizer_moves_point f₁_in_rist_W f₁_ne_one
by_contra h₅
rw [<-h₄ z z_in_W] at z_moved
have h₆ : ⁅f₁, ⁅f₂, h⁆⁆ • z = z := by rw [h₅, one_smul]
exact z_moved h₆
#align proposition_1_1_1 Rubin.proposition_1_1_1
@[simp] lemma smulImage_mul {g h : G} {U : Set α} : g •'' (h •'' U) = (g*h) •'' U :=
(mul_smulImage g h U)
#check isOpen_iInter_of_finite
lemma smul_inj_moves {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
((f j)⁻¹ * f i) • x ≠ x := by
by_contra h
apply i_ne_j
apply f_smul_inj
group_action
group_action at h
exact h
def smul_inj_nbhd {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
Set α :=
(disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose
lemma smul_inj_nbhd_open {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
IsOpen (smul_inj_nbhd i_ne_j f_smul_inj) :=
by
exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.1
lemma smul_inj_nbhd_mem {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
x ∈ (smul_inj_nbhd i_ne_j f_smul_inj) :=
by
exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.1
lemma smul_inj_nbhd_disjoint {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
Disjoint
(smul_inj_nbhd i_ne_j f_smul_inj)
((f j)⁻¹ * f i •'' (smul_inj_nbhd i_ne_j f_smul_inj)) :=
by
exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.2
lemma disjoint_nbhd_fin {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)):
∃ U : Set α,
IsOpen U ∧ x ∈ U ∧ (∀ (i j : ι), i ≠ j → Disjoint (f i •'' U) (f j •'' U)) :=
by
let ι₂ := { p : ι × ι | p.1 ≠ p.2 }
let U := ⋂(p : ι₂), smul_inj_nbhd p.prop f_smul_inj
use U
-- The notations provided afterwards tend to be quite ugly because we used `Exists.choose`,
-- but the idea is that this all boils down to applying `Exists.choose_spec`, except in the disjointness case,
-- where we transform `Disjoint (f i •'' U) (f j •'' U)` into `Disjoint U ((f i)⁻¹ * f j •'' U)`
-- and transform both instances of `U` into `N`, the neighborhood of the chosen `(i, j) ∈ ι₂`
repeat' constructor
· apply isOpen_iInter_of_finite
intro ⟨⟨i, j⟩, i_ne_j⟩
apply smul_inj_nbhd_open
· apply Set.mem_iInter.mpr
intro ⟨⟨i, j⟩, i_ne_j⟩
apply smul_inj_nbhd_mem
· intro i j i_ne_j
let N := smul_inj_nbhd i_ne_j f_smul_inj
have U_subset_N : U ⊆ N := Set.iInter_subset
(fun (⟨⟨i, j⟩, i_ne_j⟩ : ι₂) => (smul_inj_nbhd i_ne_j f_smul_inj))
⟨⟨i, j⟩, i_ne_j⟩
rw [disjoint_comm, smulImage_disjoint_mul]
apply Set.disjoint_of_subset U_subset_N
· apply smulImage_subset
exact U_subset_N
· exact smul_inj_nbhd_disjoint i_ne_j f_smul_inj
-- lemma moves_inj {g : G} {x : α} {n : } (period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- intros i j same_img,
-- by_contra i_ne_j,
-- let same_img' := congr_arg ((•) (g ^ (-(j : )))) same_img,
-- simp only [inv_smul_smul] at same_img',
-- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img',
-- simp only [add_left_neg, zpow_zero, one_smul] at same_img',
-- let ij := |(i:) - (j:)|,
-- rw ← sub_eq_add_neg at same_img',
-- have xfixed : g^ij • x = x := begin
-- cases abs_cases ((i:) - (j:)),
-- { rw ← h.1 at same_img', exact same_img' },
-- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' }
-- end,
-- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)),
-- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)),
-- rw zero_sub at neg_le,
-- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j),
-- rw sub_zero at le_pos,
-- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩,
-- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed,
-- end
-- lemma int_to_nat (k : ) (k_pos : k ≥ 1) : k = k.nat_abs := begin
-- cases (int.nat_abs_eq k),
-- { exact h },
-- { have : -(k.nat_abs : ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg,
-- rw ← h at this, by_contra, linarith }
-- end
-- lemma moves_inj_N {g : G} {x : α} {n : } (period_ge_n' : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x,
-- { intros k one_le_k k_lt_n,
-- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)),
-- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)),
-- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n,
-- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this,
-- exact this },
-- have := moves_inj period_ge_n,
-- done
-- end
-- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:) • x) := begin
-- apply moves_inj,
-- intros k k_ge_1 k_lt_5,
-- by_contra xfixed,
-- have k_div_12 : k * (12 / k) = 12 := begin
-- interval_cases using k_ge_1 k_lt_5; norm_num
-- end,
-- have veryfixed : g^12 • x = x := begin
-- let := smul_zpow_eq_of_smul_eq (12/k) xfixed,
-- rw [← zpow_mul,k_div_12] at this,
-- norm_cast at this
-- end,
-- exact xmoves veryfixed
-- end
-- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin
-- intros locally_moving alg_disjoint,
-- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty
-- by_contra not_disjoint,
-- let U := support α f ∩ support α (g^12),
-- have U_nonempty : U.nonempty := Set.not_disjoint_iff_nonempty_inter.mp not_disjoint,
-- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint
-- let x := U_nonempty.some,
-- have five_points : function.injective (λi : fin 5, g^(i:) • x) := moves_1234_of_moves_12 (mem_support.mp $ (Set.inter_subset_right _ _) U_nonempty.some_mem),
-- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((Set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩,
-- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩,
-- simp only at disjoint_img_V₁,
-- let V := V₀ ∩ V₁,
-- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V
-- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (Set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩),
-- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- have comm_non_trivial : ¬commute f h := begin
-- by_contra comm_trivial,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩,
-- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (Set.disjoint_of_subset (Set.inter_subset_left V₀ V₁) (smul''_subset f (Set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V,
-- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm,
-- exact z_moved act_comm.symm,
-- end,
-- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g)
-- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩,
-- let h' := ⁅f₁,⁅f₂,h⁆⁆,
-- -- now observe that supp([f₂, h]) ⊆ V f₂(V), and by the same reasoning supp(h')⊆Vf₁(V)f₂(V)f₁f₂(V)
-- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V (f₂ •'' V) := (support_comm α f₂ h).trans (Set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV),
-- have support_h' : support α h' ⊆ (i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin
-- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (Set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)),
-- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this,
-- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V),
-- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u,
-- exact rw_u.symm ▸ this,
-- end,
-- -- since h' is nontrivial, it has at least one point p in its support
-- cases faithful_moves_point' α h'_non_trivial with p p_moves,
-- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h')
-- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin
-- intro i,
-- rw mem_support,
-- by_contra p_fixed,
-- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed,
-- exact p_moves p_fixed,
-- end,
-- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂}
-- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial,
-- let choice := λi : fin 5, (Set.mem_Union.mp $ support_h' $ gi_in_support i).some,
-- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩,
-- clear h_1_w h_1_h_h_w pigeonhole,
-- let k := f₁^(choice i).1.val*f₂^(choice i).2.val,
-- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice,
-- rw ← same_choice },
-- have g_i : g^i.val • p ∈ k •'' V := (Set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec,
-- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (Set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec,
-- -- but since g^(ji)(V) is disjoint from V and k commutes with g, we know that g^(ji)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V).
-- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin
-- let := (disjoint_smul'' (g^(-(i.val+j.val : ))) (disjoint_img_V₁ i j i_ne_j)).symm,
-- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this,
-- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this,
-- from Set.disjoint_of_subset (smul''_subset _ (Set.inter_subset_right V₀ V₁)) (smul''_subset _ (Set.inter_subset_right V₀ V₁)) this
-- end,
-- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val),
-- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin
-- let this := disjoint_smul'' k g_disjoint,
-- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val,
-- ← (k_commutes.symm.inv_left.pow_left i.val).eq,
-- ← (k_commutes.symm.inv_left.pow_left j.val).eq,
-- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this,
-- from this
-- end,
-- exact Set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j)
-- end
-- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin
-- intro alg_disjoint,
-- by_contra non_commute,
-- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩,
-- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d,
-- tauto
-- end
-- section remark_1_3
-- def G := equiv.perm (fin 2)
-- def σ := equiv.swap (0 : fin 2) (1 : fin 2)
-- example : is_algebraically_disjoint σ σ := begin
-- intro h,
-- fin_cases h,
-- intro hyp1,
-- exfalso,
-- swap, intro hyp2, exfalso,
-- -- is commute decidable? cc,
-- sorry -- dec_trivial
-- sorry -- second sorry needed
-- end
-- end remark_1_3
end Rubin