|
|
import Mathlib.Data.Finset.Basic
|
|
|
import Mathlib.GroupTheory.Commutator
|
|
|
import Mathlib.GroupTheory.Subgroup.Basic
|
|
|
import Mathlib.GroupTheory.GroupAction.Basic
|
|
|
import Mathlib.Topology.Basic
|
|
|
import Mathlib.Topology.Algebra.ConstMulAction
|
|
|
|
|
|
import Rubin.MulActionExt
|
|
|
import Rubin.SmulImage
|
|
|
import Rubin.Tactic
|
|
|
|
|
|
namespace Rubin
|
|
|
|
|
|
/--
|
|
|
The support of a group action of `g: G` on `α` (here generalized to `SMul G α`)
|
|
|
is the set of values `x` in `α` for which `g • x ≠ x`.
|
|
|
|
|
|
This can also be thought of as the complement of the fixpoints of `(g •)`,
|
|
|
which [`support_eq_compl_fixedBy`] provides.
|
|
|
--/
|
|
|
-- TODO: rename to MulAction.support
|
|
|
def Support {G : Type _} (α : Type _) [SMul G α] (g : G) :=
|
|
|
{x : α | g • x ≠ x}
|
|
|
#align support Rubin.Support
|
|
|
|
|
|
variable {G α: Type _}
|
|
|
variable [Group G]
|
|
|
variable [MulAction G α]
|
|
|
variable {f g : G}
|
|
|
variable {x : α}
|
|
|
|
|
|
theorem support_eq_compl_fixedBy : Support α g = (MulAction.fixedBy α g)ᶜ := by tauto
|
|
|
#align support_eq_not_fixed_by Rubin.support_eq_compl_fixedBy
|
|
|
|
|
|
theorem fixedBy_eq_compl_support : MulAction.fixedBy α g = (Support α g)ᶜ := by
|
|
|
rw [<-compl_compl (MulAction.fixedBy _ _)]
|
|
|
exact congr_arg (·ᶜ) support_eq_compl_fixedBy
|
|
|
|
|
|
theorem mem_support :
|
|
|
x ∈ Support α g ↔ g • x ≠ x := by tauto
|
|
|
#align mem_support Rubin.mem_support
|
|
|
|
|
|
theorem not_mem_support :
|
|
|
x ∉ Support α g ↔ g • x = x := by
|
|
|
rw [Rubin.mem_support, Classical.not_not]
|
|
|
#align mem_not_support Rubin.not_mem_support
|
|
|
|
|
|
theorem support_one : Support α (1 : G) = ∅ := by
|
|
|
rw [Set.eq_empty_iff_forall_not_mem]
|
|
|
intro x
|
|
|
rw [not_mem_support]
|
|
|
simp
|
|
|
|
|
|
theorem smul_mem_support :
|
|
|
x ∈ Support α g → g • x ∈ Support α g := fun h =>
|
|
|
h ∘ smul_left_cancel g
|
|
|
#align smul_in_support Rubin.smul_mem_support
|
|
|
|
|
|
theorem inv_smul_mem_support :
|
|
|
x ∈ Support α g → g⁻¹ • x ∈ Support α g := fun h k =>
|
|
|
h (smul_inv_smul g x ▸ smul_congr g k)
|
|
|
#align inv_smul_in_support Rubin.inv_smul_mem_support
|
|
|
|
|
|
theorem fixed_of_disjoint {U : Set α} :
|
|
|
x ∈ U → Disjoint U (Support α g) → g • x = x :=
|
|
|
fun x_in_U disjoint_U_support =>
|
|
|
not_mem_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U)
|
|
|
#align fixed_of_disjoint Rubin.fixed_of_disjoint
|
|
|
|
|
|
theorem support_mul (g h : G) (α : Type _) [MulAction G α] :
|
|
|
Support α (g * h) ⊆
|
|
|
Support α g ∪ Support α h :=
|
|
|
by
|
|
|
intro x x_in_support
|
|
|
by_contra h_support
|
|
|
|
|
|
let res := not_or.mp h_support
|
|
|
exact
|
|
|
x_in_support
|
|
|
((mul_smul g h x).trans
|
|
|
((congr_arg (g • ·) (not_mem_support.mp res.2)).trans <| not_mem_support.mp res.1))
|
|
|
#align support_mul Rubin.support_mul
|
|
|
|
|
|
theorem support_conjugate (α : Type _) [MulAction G α] (g h : G) :
|
|
|
Support α (h * g * h⁻¹) = h •'' Support α g :=
|
|
|
by
|
|
|
ext x
|
|
|
rw [Rubin.mem_support, Rubin.mem_smulImage, Rubin.mem_support,
|
|
|
mul_smul, mul_smul]
|
|
|
constructor
|
|
|
· intro h1; by_contra h2; exact h1 ((congr_arg (h • ·) h2).trans (smul_inv_smul _ _))
|
|
|
· intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg (h⁻¹ • ·) h2)
|
|
|
#align support_conjugate Rubin.support_conjugate
|
|
|
|
|
|
theorem support_inv (α : Type _) [MulAction G α] (g : G) :
|
|
|
Support α g⁻¹ = Support α g :=
|
|
|
by
|
|
|
ext x
|
|
|
rw [Rubin.mem_support, Rubin.mem_support]
|
|
|
constructor
|
|
|
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mp h2)
|
|
|
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mpr h2)
|
|
|
#align support_inv Rubin.support_inv
|
|
|
|
|
|
theorem support_pow (α : Type _) [MulAction G α] (g : G) (j : ℕ) :
|
|
|
Support α (g ^ j) ⊆ Support α g :=
|
|
|
by
|
|
|
intro x xmoved
|
|
|
by_contra xfixed
|
|
|
rw [Rubin.mem_support] at xmoved
|
|
|
induction j with
|
|
|
| zero => apply xmoved; rw [pow_zero g, one_smul]
|
|
|
| succ j j_ih =>
|
|
|
apply xmoved
|
|
|
let j_ih := (congr_arg (g • ·) (not_not.mp j_ih)).trans (not_mem_support.mp xfixed)
|
|
|
simp at j_ih
|
|
|
group_action at j_ih
|
|
|
rw [<-Nat.one_add, <-zpow_ofNat, Int.ofNat_add]
|
|
|
exact j_ih
|
|
|
-- TODO: address this pain point
|
|
|
-- Alternatively:
|
|
|
-- rw [Int.add_comm, Int.ofNat_add_one_out, zpow_ofNat] at j_ih
|
|
|
-- exact j_ih
|
|
|
#align support_pow Rubin.support_pow
|
|
|
|
|
|
theorem support_zpow (α : Type _) [MulAction G α] (g : G) (j : ℤ) :
|
|
|
Support α (g ^ j) ⊆ Support α g :=
|
|
|
by
|
|
|
cases j with
|
|
|
| ofNat n =>
|
|
|
rw [Int.ofNat_eq_coe, zpow_coe_nat]
|
|
|
exact support_pow α g n
|
|
|
| negSucc n =>
|
|
|
rw [Int.negSucc_eq, zpow_neg, support_inv, zpow_add, zpow_coe_nat, zpow_one]
|
|
|
nth_rw 2 [<-pow_one g]
|
|
|
rw [<-pow_add]
|
|
|
exact support_pow α g (n+1)
|
|
|
|
|
|
theorem support_comm (α : Type _) [MulAction G α] (g h : G) :
|
|
|
Support α ⁅g, h⁆ ⊆
|
|
|
Support α h ∪ (g •'' Support α h) :=
|
|
|
by
|
|
|
intro x x_in_support
|
|
|
by_contra all_fixed
|
|
|
rw [Set.mem_union] at all_fixed
|
|
|
cases' @or_not (h • x = x) with xfixed xmoved
|
|
|
· rw [Rubin.mem_support, commutatorElement_def, mul_smul,
|
|
|
smul_eq_iff_inv_smul_eq.mp xfixed, ← Rubin.mem_support] at x_in_support
|
|
|
exact
|
|
|
((Rubin.support_conjugate α h g).symm ▸ (not_or.mp all_fixed).2)
|
|
|
x_in_support
|
|
|
· exact all_fixed (Or.inl xmoved)
|
|
|
#align support_comm Rubin.support_comm
|
|
|
|
|
|
theorem disjoint_support_comm (f g : G) {U : Set α} :
|
|
|
Support α f ⊆ U → Disjoint U (g •'' U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x :=
|
|
|
by
|
|
|
intro support_in_U disjoint_U x x_in_U
|
|
|
have support_conj : Support α (g * f⁻¹ * g⁻¹) ⊆ g •'' U := by
|
|
|
rw [support_conjugate]
|
|
|
apply smulImage_mono
|
|
|
rw [support_inv]
|
|
|
exact support_in_U
|
|
|
have goal :=
|
|
|
(congr_arg (f • ·)
|
|
|
(Rubin.fixed_of_disjoint x_in_U
|
|
|
(Set.disjoint_of_subset_right support_conj disjoint_U))).symm
|
|
|
simp at goal
|
|
|
|
|
|
-- NOTE: the nth_rewrite must happen on the second occurence, or else group_action yields an incorrect f⁻²
|
|
|
nth_rewrite 2 [goal]
|
|
|
group_action
|
|
|
#align disjoint_support_comm Rubin.disjoint_support_comm
|
|
|
|
|
|
lemma empty_of_subset_disjoint {α : Type _} {U V : Set α} :
|
|
|
Disjoint U V → U ⊆ V → U = ∅ :=
|
|
|
by
|
|
|
intro disj subset
|
|
|
apply Set.eq_of_subset_of_subset <;> try simp
|
|
|
intro x x_in_U
|
|
|
simp
|
|
|
apply disjoint_not_mem disj
|
|
|
exact x_in_U
|
|
|
exact subset x_in_U
|
|
|
|
|
|
theorem not_commute_of_disj_support_smulImage {G α : Type _}
|
|
|
[Group G] [MulAction G α] [FaithfulSMul G α]
|
|
|
{f g : G} {U : Set α} (f_ne_one : f ≠ 1)
|
|
|
(subset : Support α f ⊆ U)
|
|
|
(disj : Disjoint (Support α f) (g •'' U)) :
|
|
|
¬Commute f g :=
|
|
|
by
|
|
|
intro h_comm
|
|
|
have h₀ : ∀ x ∈ U, x ∉ Support α f := by
|
|
|
intro x x_in_U
|
|
|
unfold Commute SemiconjBy at h_comm
|
|
|
have gx_in_img := (mem_smulImage' g).mpr x_in_U
|
|
|
have h₁ : g • f • x = g • x := by
|
|
|
have res := disjoint_not_mem₂ disj gx_in_img
|
|
|
rw [not_mem_support] at res
|
|
|
rw [<-mul_smul] at res
|
|
|
rw [h_comm] at res
|
|
|
rw [mul_smul] at res
|
|
|
exact res
|
|
|
have h₂ : f • x = x := by
|
|
|
rw [<-one_smul G (f • x)]
|
|
|
nth_rw 2 [<-one_smul G x]
|
|
|
rw [<-mul_left_inv g]
|
|
|
rw [mul_smul]
|
|
|
rw [mul_smul]
|
|
|
nth_rw 1 [h₁]
|
|
|
rw [<-not_mem_support] at h₂
|
|
|
exact h₂
|
|
|
|
|
|
have h₀' : Disjoint (Support α f) U := by
|
|
|
intro T; simp
|
|
|
intro T_ss_supp T_ss_U
|
|
|
intro x x_in_T
|
|
|
apply h₀
|
|
|
exact T_ss_U x_in_T
|
|
|
exact T_ss_supp x_in_T
|
|
|
|
|
|
have support_empty : Support α f = ∅ := empty_of_subset_disjoint h₀' subset
|
|
|
|
|
|
apply f_ne_one
|
|
|
apply smul_left_injective' (α := α)
|
|
|
ext x
|
|
|
simp
|
|
|
by_contra h
|
|
|
rw [<-ne_eq, <-mem_support] at h
|
|
|
apply Set.eq_empty_iff_forall_not_mem.mp support_empty
|
|
|
exact h
|
|
|
|
|
|
theorem support_eq: Support α f = Support α g ↔ ∀ (x : α), (f • x = x ∧ g • x = x) ∨ (f • x ≠ x ∧ g • x ≠ x) := by
|
|
|
constructor
|
|
|
· intro h
|
|
|
intro x
|
|
|
by_cases x_in? : x ∈ Support α f
|
|
|
· right
|
|
|
have gx_ne_x := by rw [h] at x_in?; exact x_in?
|
|
|
exact ⟨x_in?, gx_ne_x⟩
|
|
|
· left
|
|
|
have fx_eq_x : f • x = x := by rw [<-not_mem_support]; exact x_in?
|
|
|
have gx_eq_x : g • x = x := by rw [<-not_mem_support, <-h]; exact x_in?
|
|
|
exact ⟨fx_eq_x, gx_eq_x⟩
|
|
|
· intro h
|
|
|
ext x
|
|
|
constructor
|
|
|
· intro fx_ne_x
|
|
|
rw [mem_support] at fx_ne_x
|
|
|
rw [mem_support]
|
|
|
cases h x with
|
|
|
| inl h₁ => exfalso; exact fx_ne_x h₁.left
|
|
|
| inr h₁ => exact h₁.right
|
|
|
· intro gx_ne_x
|
|
|
rw [mem_support] at gx_ne_x
|
|
|
rw [mem_support]
|
|
|
cases h x with
|
|
|
| inl h₁ => exfalso; exact gx_ne_x h₁.right
|
|
|
| inr h₁ => exact h₁.left
|
|
|
|
|
|
theorem support_empty_iff (g : G) [h_f : FaithfulSMul G α] :
|
|
|
Support α g = ∅ ↔ g = 1 :=
|
|
|
by
|
|
|
constructor
|
|
|
· intro supp_empty
|
|
|
rw [Set.eq_empty_iff_forall_not_mem] at supp_empty
|
|
|
apply h_f.eq_of_smul_eq_smul
|
|
|
intro x
|
|
|
specialize supp_empty x
|
|
|
rw [not_mem_support] at supp_empty
|
|
|
simp
|
|
|
exact supp_empty
|
|
|
· intro g_eq_1
|
|
|
rw [g_eq_1]
|
|
|
exact support_one
|
|
|
|
|
|
theorem support_nonempty_iff (g : G) [h_f : FaithfulSMul G α] :
|
|
|
Set.Nonempty (Support α g) ↔ g ≠ 1 :=
|
|
|
by
|
|
|
constructor
|
|
|
· intro ⟨x, x_in_supp⟩
|
|
|
by_contra g_eq_1
|
|
|
rw [g_eq_1, support_one] at x_in_supp
|
|
|
exact x_in_supp
|
|
|
· intro g_ne_one
|
|
|
by_contra supp_empty
|
|
|
rw [Set.not_nonempty_iff_eq_empty] at supp_empty
|
|
|
exact g_ne_one ((support_empty_iff _).mp supp_empty)
|
|
|
|
|
|
theorem elem_moved_in_support (g : G) (p : α) :
|
|
|
p ∈ Support α g ↔ g • p ∈ Support α g :=
|
|
|
by
|
|
|
suffices ∀ (g : G) (p : α), p ∈ Support α g → g • p ∈ Support α g by
|
|
|
constructor
|
|
|
exact this g p
|
|
|
rw [<-support_inv]
|
|
|
intro H
|
|
|
rw [<-one_smul G p, <-mul_left_inv g, mul_smul]
|
|
|
exact this _ _ H
|
|
|
intro g p p_in_supp
|
|
|
by_contra gp_notin_supp
|
|
|
rw [<-support_inv, not_mem_support] at gp_notin_supp
|
|
|
rw [mem_support] at p_in_supp
|
|
|
apply p_in_supp
|
|
|
symm at gp_notin_supp
|
|
|
group_action at gp_notin_supp
|
|
|
exact gp_notin_supp
|
|
|
|
|
|
theorem elem_moved_in_support' {g : G} (p : α) {U : Set α} (support_in_U : Support α g ⊆ U):
|
|
|
p ∈ U ↔ g • p ∈ U :=
|
|
|
by
|
|
|
by_cases p_in_supp? : p ∈ Support α g
|
|
|
· constructor
|
|
|
rw [elem_moved_in_support] at p_in_supp?
|
|
|
all_goals intro; exact support_in_U p_in_supp?
|
|
|
· rw [not_mem_support] at p_in_supp?
|
|
|
rw [p_in_supp?]
|
|
|
|
|
|
theorem elem_moved_in_support_zpow {g : G} (p : α) (j : ℤ) {U : Set α} (support_in_U : Support α g ⊆ U):
|
|
|
p ∈ U ↔ g^j • p ∈ U :=
|
|
|
by
|
|
|
by_cases p_in_supp? : p ∈ Support α g
|
|
|
· constructor
|
|
|
all_goals intro; apply support_in_U
|
|
|
swap; exact p_in_supp?
|
|
|
rw [<-elem_moved_in_support' p (support_zpow α g j)]
|
|
|
assumption
|
|
|
· rw [not_mem_support] at p_in_supp?
|
|
|
rw [smul_zpow_eq_of_smul_eq j p_in_supp?]
|
|
|
|
|
|
theorem orbit_subset_support (g : G) (p : α) :
|
|
|
MulAction.orbit (Subgroup.closure {g}) p ⊆ Support α g ∪ {p} :=
|
|
|
by
|
|
|
intro q q_in_orbit
|
|
|
rw [MulAction.mem_orbit_iff] at q_in_orbit
|
|
|
let ⟨⟨h, h_in_closure⟩, hp_eq_q⟩ := q_in_orbit
|
|
|
simp at hp_eq_q
|
|
|
rw [Subgroup.mem_closure_singleton] at h_in_closure
|
|
|
let ⟨n, g_pow_n_eq_h⟩ := h_in_closure
|
|
|
rw [<-hp_eq_q, <-g_pow_n_eq_h]
|
|
|
clear hp_eq_q g_pow_n_eq_h h_in_closure
|
|
|
|
|
|
have union_superset : Support α g ⊆ Support α g ∪ {p} := by
|
|
|
simp only [Set.union_singleton, Set.subset_insert]
|
|
|
rw [<-elem_moved_in_support_zpow _ _ union_superset]
|
|
|
simp only [Set.union_singleton, Set.mem_insert_iff, true_or]
|
|
|
|
|
|
theorem orbit_subset_of_support_subset (g : G) {p : α} {U : Set α} (p_in_U : p ∈ U)
|
|
|
(supp_ss_U : Support α g ⊆ U) :
|
|
|
MulAction.orbit (Subgroup.closure {g}) p ⊆ U :=
|
|
|
by
|
|
|
apply subset_trans
|
|
|
exact orbit_subset_support g p
|
|
|
apply Set.union_subset
|
|
|
assumption
|
|
|
rw [Set.singleton_subset_iff]
|
|
|
assumption
|
|
|
|
|
|
theorem fixed_smulImage_in_support (g : G) {U : Set α} :
|
|
|
Support α g ⊆ U → g •'' U = U :=
|
|
|
by
|
|
|
intro support_in_U
|
|
|
ext x
|
|
|
rw [mem_smulImage]
|
|
|
symm
|
|
|
apply elem_moved_in_support'
|
|
|
rw [support_inv]
|
|
|
assumption
|
|
|
#align fixes_subset_within_support Rubin.fixed_smulImage_in_support
|
|
|
|
|
|
theorem smulImage_subset_in_support (g : G) (U V : Set α) :
|
|
|
U ⊆ V → Support α g ⊆ V → g •'' U ⊆ V := fun U_in_V support_in_V =>
|
|
|
Rubin.fixed_smulImage_in_support g support_in_V ▸
|
|
|
smulImage_mono g U_in_V
|
|
|
#align moves_subset_within_support Rubin.smulImage_subset_in_support
|
|
|
|
|
|
|
|
|
section Continuous
|
|
|
|
|
|
variable {G α : Type _}
|
|
|
variable [Group G]
|
|
|
variable [TopologicalSpace α]
|
|
|
variable [MulAction G α]
|
|
|
variable [ContinuousConstSMul G α]
|
|
|
|
|
|
theorem support_isOpen (g : G) [T2Space α]: IsOpen (Support α g) := by
|
|
|
apply isOpen_iff_forall_mem_open.mpr
|
|
|
intro x xmoved
|
|
|
let ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩ := T2Space.t2 xmoved
|
|
|
|
|
|
refine ⟨
|
|
|
V ∩ (g⁻¹ •'' U),
|
|
|
?subset,
|
|
|
IsOpen.inter open_V (smulImage_isOpen g⁻¹ open_U),
|
|
|
⟨x_in_V, mem_inv_smulImage.mpr gx_in_U⟩
|
|
|
⟩
|
|
|
intro y ⟨yV, yU⟩
|
|
|
apply Disjoint.ne_of_mem disjoint_U_V _ yV
|
|
|
rw [mem_inv_smulImage] at yU
|
|
|
exact yU
|
|
|
|
|
|
end Continuous
|
|
|
|
|
|
end Rubin
|