You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/Support.lean

406 lines
13 KiB

import Mathlib.Data.Finset.Basic
import Mathlib.GroupTheory.Commutator
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.Topology.Basic
import Mathlib.Topology.Algebra.ConstMulAction
import Rubin.MulActionExt
import Rubin.SmulImage
import Rubin.Tactic
namespace Rubin
/--
The support of a group action of `g: G` on `α` (here generalized to `SMul G α`)
is the set of values `x` in `α` for which `g • x ≠ x`.
This can also be thought of as the complement of the fixpoints of `(g •)`,
which [`support_eq_compl_fixedBy`] provides.
--/
-- TODO: rename to MulAction.support
def Support {G : Type _} (α : Type _) [SMul G α] (g : G) :=
{x : α | g • x ≠ x}
#align support Rubin.Support
variable {G α: Type _}
variable [Group G]
variable [MulAction G α]
variable {f g : G}
variable {x : α}
theorem support_eq_compl_fixedBy : Support α g = (MulAction.fixedBy α g)ᶜ := by tauto
#align support_eq_not_fixed_by Rubin.support_eq_compl_fixedBy
theorem fixedBy_eq_compl_support : MulAction.fixedBy α g = (Support α g)ᶜ := by
rw [<-compl_compl (MulAction.fixedBy _ _)]
exact congr_arg (·ᶜ) support_eq_compl_fixedBy
theorem mem_support :
x ∈ Support α g ↔ g • x ≠ x := by tauto
#align mem_support Rubin.mem_support
theorem not_mem_support :
x ∉ Support α g ↔ g • x = x := by
rw [Rubin.mem_support, Classical.not_not]
#align mem_not_support Rubin.not_mem_support
theorem support_one : Support α (1 : G) = ∅ := by
rw [Set.eq_empty_iff_forall_not_mem]
intro x
rw [not_mem_support]
simp
theorem smul_mem_support :
x ∈ Support α g → g • x ∈ Support α g := fun h =>
h ∘ smul_left_cancel g
#align smul_in_support Rubin.smul_mem_support
theorem inv_smul_mem_support :
x ∈ Support α g → g⁻¹ • x ∈ Support α g := fun h k =>
h (smul_inv_smul g x ▸ smul_congr g k)
#align inv_smul_in_support Rubin.inv_smul_mem_support
theorem fixed_of_disjoint {U : Set α} :
x ∈ U → Disjoint U (Support α g) → g • x = x :=
fun x_in_U disjoint_U_support =>
not_mem_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U)
#align fixed_of_disjoint Rubin.fixed_of_disjoint
theorem support_mul (g h : G) (α : Type _) [MulAction G α] :
Support α (g * h) ⊆
Support α g Support α h :=
by
intro x x_in_support
by_contra h_support
let res := not_or.mp h_support
exact
x_in_support
((mul_smul g h x).trans
((congr_arg (g • ·) (not_mem_support.mp res.2)).trans <| not_mem_support.mp res.1))
#align support_mul Rubin.support_mul
theorem support_conjugate (α : Type _) [MulAction G α] (g h : G) :
Support α (h * g * h⁻¹) = h •'' Support α g :=
by
ext x
rw [Rubin.mem_support, Rubin.mem_smulImage, Rubin.mem_support,
mul_smul, mul_smul]
constructor
· intro h1; by_contra h2; exact h1 ((congr_arg (h • ·) h2).trans (smul_inv_smul _ _))
· intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg (h⁻¹ • ·) h2)
#align support_conjugate Rubin.support_conjugate
theorem support_inv (α : Type _) [MulAction G α] (g : G) :
Support α g⁻¹ = Support α g :=
by
ext x
rw [Rubin.mem_support, Rubin.mem_support]
constructor
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mp h2)
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mpr h2)
#align support_inv Rubin.support_inv
theorem support_pow (α : Type _) [MulAction G α] (g : G) (j : ) :
Support α (g ^ j) ⊆ Support α g :=
by
intro x xmoved
by_contra xfixed
rw [Rubin.mem_support] at xmoved
induction j with
| zero => apply xmoved; rw [pow_zero g, one_smul]
| succ j j_ih =>
apply xmoved
let j_ih := (congr_arg (g • ·) (not_not.mp j_ih)).trans (not_mem_support.mp xfixed)
simp at j_ih
group_action at j_ih
rw [<-Nat.one_add, <-zpow_ofNat, Int.ofNat_add]
exact j_ih
-- TODO: address this pain point
-- Alternatively:
-- rw [Int.add_comm, Int.ofNat_add_one_out, zpow_ofNat] at j_ih
-- exact j_ih
#align support_pow Rubin.support_pow
theorem support_zpow (α : Type _) [MulAction G α] (g : G) (j : ) :
Support α (g ^ j) ⊆ Support α g :=
by
cases j with
| ofNat n =>
rw [Int.ofNat_eq_coe, zpow_coe_nat]
exact support_pow α g n
| negSucc n =>
rw [Int.negSucc_eq, zpow_neg, support_inv, zpow_add, zpow_coe_nat, zpow_one]
nth_rw 2 [<-pow_one g]
rw [<-pow_add]
exact support_pow α g (n+1)
theorem support_comm (α : Type _) [MulAction G α] (g h : G) :
Support α ⁅g, h⁆ ⊆
Support α h (g •'' Support α h) :=
by
intro x x_in_support
by_contra all_fixed
rw [Set.mem_union] at all_fixed
cases' @or_not (h • x = x) with xfixed xmoved
· rw [Rubin.mem_support, commutatorElement_def, mul_smul,
smul_eq_iff_inv_smul_eq.mp xfixed, ← Rubin.mem_support] at x_in_support
exact
((Rubin.support_conjugate α h g).symm ▸ (not_or.mp all_fixed).2)
x_in_support
· exact all_fixed (Or.inl xmoved)
#align support_comm Rubin.support_comm
theorem disjoint_support_comm (f g : G) {U : Set α} :
Support α f ⊆ U → Disjoint U (g •'' U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x :=
by
intro support_in_U disjoint_U x x_in_U
have support_conj : Support α (g * f⁻¹ * g⁻¹) ⊆ g •'' U := by
rw [support_conjugate]
apply smulImage_mono
rw [support_inv]
exact support_in_U
have goal :=
(congr_arg (f • ·)
(Rubin.fixed_of_disjoint x_in_U
(Set.disjoint_of_subset_right support_conj disjoint_U))).symm
simp at goal
-- NOTE: the nth_rewrite must happen on the second occurence, or else group_action yields an incorrect f⁻²
nth_rewrite 2 [goal]
group_action
#align disjoint_support_comm Rubin.disjoint_support_comm
lemma empty_of_subset_disjoint {α : Type _} {U V : Set α} :
Disjoint U V → U ⊆ V → U = ∅ :=
by
intro disj subset
apply Set.eq_of_subset_of_subset <;> try simp
intro x x_in_U
simp
apply disjoint_not_mem disj
exact x_in_U
exact subset x_in_U
theorem not_commute_of_disj_support_smulImage {G α : Type _}
[Group G] [MulAction G α] [FaithfulSMul G α]
{f g : G} {U : Set α} (f_ne_one : f ≠ 1)
(subset : Support α f ⊆ U)
(disj : Disjoint (Support α f) (g •'' U)) :
¬Commute f g :=
by
intro h_comm
have h₀ : ∀ x ∈ U, x ∉ Support α f := by
intro x x_in_U
unfold Commute SemiconjBy at h_comm
have gx_in_img := (mem_smulImage' g).mpr x_in_U
have h₁ : g • f • x = g • x := by
have res := disjoint_not_mem₂ disj gx_in_img
rw [not_mem_support] at res
rw [<-mul_smul] at res
rw [h_comm] at res
rw [mul_smul] at res
exact res
have h₂ : f • x = x := by
rw [<-one_smul G (f • x)]
nth_rw 2 [<-one_smul G x]
rw [<-mul_left_inv g]
rw [mul_smul]
rw [mul_smul]
nth_rw 1 [h₁]
rw [<-not_mem_support] at h₂
exact h₂
have h₀' : Disjoint (Support α f) U := by
intro T; simp
intro T_ss_supp T_ss_U
intro x x_in_T
apply h₀
exact T_ss_U x_in_T
exact T_ss_supp x_in_T
have support_empty : Support α f = ∅ := empty_of_subset_disjoint h₀' subset
apply f_ne_one
apply smul_left_injective' (α := α)
ext x
simp
by_contra h
rw [<-ne_eq, <-mem_support] at h
apply Set.eq_empty_iff_forall_not_mem.mp support_empty
exact h
theorem support_eq: Support α f = Support α g ↔ ∀ (x : α), (f • x = x ∧ g • x = x) (f • x ≠ x ∧ g • x ≠ x) := by
constructor
· intro h
intro x
by_cases x_in? : x ∈ Support α f
· right
have gx_ne_x := by rw [h] at x_in?; exact x_in?
exact ⟨x_in?, gx_ne_x⟩
· left
have fx_eq_x : f • x = x := by rw [<-not_mem_support]; exact x_in?
have gx_eq_x : g • x = x := by rw [<-not_mem_support, <-h]; exact x_in?
exact ⟨fx_eq_x, gx_eq_x⟩
· intro h
ext x
constructor
· intro fx_ne_x
rw [mem_support] at fx_ne_x
rw [mem_support]
cases h x with
| inl h₁ => exfalso; exact fx_ne_x h₁.left
| inr h₁ => exact h₁.right
· intro gx_ne_x
rw [mem_support] at gx_ne_x
rw [mem_support]
cases h x with
| inl h₁ => exfalso; exact gx_ne_x h₁.right
| inr h₁ => exact h₁.left
theorem support_empty_iff (g : G) [h_f : FaithfulSMul G α] :
Support α g = ∅ ↔ g = 1 :=
by
constructor
· intro supp_empty
rw [Set.eq_empty_iff_forall_not_mem] at supp_empty
apply h_f.eq_of_smul_eq_smul
intro x
specialize supp_empty x
rw [not_mem_support] at supp_empty
simp
exact supp_empty
· intro g_eq_1
rw [g_eq_1]
exact support_one
theorem support_nonempty_iff (g : G) [h_f : FaithfulSMul G α] :
Set.Nonempty (Support α g) ↔ g ≠ 1 :=
by
constructor
· intro ⟨x, x_in_supp⟩
by_contra g_eq_1
rw [g_eq_1, support_one] at x_in_supp
exact x_in_supp
· intro g_ne_one
by_contra supp_empty
rw [Set.not_nonempty_iff_eq_empty] at supp_empty
exact g_ne_one ((support_empty_iff _).mp supp_empty)
theorem elem_moved_in_support (g : G) (p : α) :
p ∈ Support α g ↔ g • p ∈ Support α g :=
by
suffices ∀ (g : G) (p : α), p ∈ Support α g → g • p ∈ Support α g by
constructor
exact this g p
rw [<-support_inv]
intro H
rw [<-one_smul G p, <-mul_left_inv g, mul_smul]
exact this _ _ H
intro g p p_in_supp
by_contra gp_notin_supp
rw [<-support_inv, not_mem_support] at gp_notin_supp
rw [mem_support] at p_in_supp
apply p_in_supp
symm at gp_notin_supp
group_action at gp_notin_supp
exact gp_notin_supp
theorem elem_moved_in_support' {g : G} (p : α) {U : Set α} (support_in_U : Support α g ⊆ U):
p ∈ U ↔ g • p ∈ U :=
by
by_cases p_in_supp? : p ∈ Support α g
· constructor
rw [elem_moved_in_support] at p_in_supp?
all_goals intro; exact support_in_U p_in_supp?
· rw [not_mem_support] at p_in_supp?
rw [p_in_supp?]
theorem elem_moved_in_support_zpow {g : G} (p : α) (j : ) {U : Set α} (support_in_U : Support α g ⊆ U):
p ∈ U ↔ g^j • p ∈ U :=
by
by_cases p_in_supp? : p ∈ Support α g
· constructor
all_goals intro; apply support_in_U
swap; exact p_in_supp?
rw [<-elem_moved_in_support' p (support_zpow α g j)]
assumption
· rw [not_mem_support] at p_in_supp?
rw [smul_zpow_eq_of_smul_eq j p_in_supp?]
theorem orbit_subset_support (g : G) (p : α) :
MulAction.orbit (Subgroup.closure {g}) p ⊆ Support α g {p} :=
by
intro q q_in_orbit
rw [MulAction.mem_orbit_iff] at q_in_orbit
let ⟨⟨h, h_in_closure⟩, hp_eq_q⟩ := q_in_orbit
simp at hp_eq_q
rw [Subgroup.mem_closure_singleton] at h_in_closure
let ⟨n, g_pow_n_eq_h⟩ := h_in_closure
rw [<-hp_eq_q, <-g_pow_n_eq_h]
clear hp_eq_q g_pow_n_eq_h h_in_closure
have union_superset : Support α g ⊆ Support α g {p} := by
simp only [Set.union_singleton, Set.subset_insert]
rw [<-elem_moved_in_support_zpow _ _ union_superset]
simp only [Set.union_singleton, Set.mem_insert_iff, true_or]
theorem orbit_subset_of_support_subset (g : G) {p : α} {U : Set α} (p_in_U : p ∈ U)
(supp_ss_U : Support α g ⊆ U) :
MulAction.orbit (Subgroup.closure {g}) p ⊆ U :=
by
apply subset_trans
exact orbit_subset_support g p
apply Set.union_subset
assumption
rw [Set.singleton_subset_iff]
assumption
theorem fixed_smulImage_in_support (g : G) {U : Set α} :
Support α g ⊆ U → g •'' U = U :=
by
intro support_in_U
ext x
rw [mem_smulImage]
symm
apply elem_moved_in_support'
rw [support_inv]
assumption
#align fixes_subset_within_support Rubin.fixed_smulImage_in_support
theorem smulImage_subset_in_support (g : G) (U V : Set α) :
U ⊆ V → Support α g ⊆ V → g •'' U ⊆ V := fun U_in_V support_in_V =>
Rubin.fixed_smulImage_in_support g support_in_V ▸
smulImage_mono g U_in_V
#align moves_subset_within_support Rubin.smulImage_subset_in_support
section Continuous
variable {G α : Type _}
variable [Group G]
variable [TopologicalSpace α]
variable [MulAction G α]
variable [ContinuousConstSMul G α]
theorem support_isOpen (g : G) [T2Space α]: IsOpen (Support α g) := by
apply isOpen_iff_forall_mem_open.mpr
intro x xmoved
let ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩ := T2Space.t2 xmoved
refine ⟨
V ∩ (g⁻¹ •'' U),
?subset,
IsOpen.inter open_V (smulImage_isOpen g⁻¹ open_U),
⟨x_in_V, mem_inv_smulImage.mpr gx_in_U⟩
intro y ⟨yV, yU⟩
apply Disjoint.ne_of_mem disjoint_U_V _ yV
rw [mem_inv_smulImage] at yU
exact yU
end Continuous
end Rubin