You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

256 lines
7.8 KiB

From stdpp Require Import base relations.
From iris Require Import prelude.
From semantics.lib Require Import maps.
From semantics.ts.stlc_extended Require Import lang notation ctxstep.
(** ** Syntactic typing *)
Inductive type : Type :=
| Int
| Fun (A B : type)
| Prod (A B : type)
| Sum (A B : type).
Definition typing_context := gmap string type.
Implicit Types
(Γ : typing_context)
(v : val)
(e : expr).
Declare Scope FType_scope.
Delimit Scope FType_scope with ty.
Bind Scope FType_scope with type.
Infix "" := Fun : FType_scope.
Notation "(→)" := Fun (only parsing) : FType_scope.
Infix "×" := Prod (at level 70) : FType_scope.
Notation "(×)" := Prod (only parsing) : FType_scope.
Infix "+" := Sum : FType_scope.
Notation "(+)" := Sum (only parsing) : FType_scope.
Reserved Notation "Γ ⊢ e : A" (at level 74, e, A at next level).
Inductive syn_typed : typing_context expr type Prop :=
| typed_var Γ x A :
Γ !! x = Some A
Γ (Var x) : A
| typed_lam Γ x e A B :
(<[ x := A]> Γ) e : B
Γ (Lam (BNamed x) e) : (A B)
| typed_lam_anon Γ e A B :
Γ e : B
Γ (Lam BAnon e) : (A B)
| typed_int Γ z : Γ (LitInt z) : Int
| typed_app Γ e1 e2 A B :
Γ e1 : (A B)
Γ e2 : A
Γ (e1 e2)%E : B
| typed_add Γ e1 e2 :
Γ e1 : Int
Γ e2 : Int
Γ e1 + e2 : Int
(* TODO: provide the new typing rules *)
where "Γ ⊢ e : A" := (syn_typed Γ e%E A%ty).
#[export] Hint Constructors syn_typed : core.
(** Examples *)
Goal (λ: "x", "x")%E : (Int Int).
Proof. eauto. Qed.
Lemma syn_typed_closed Γ e A X :
Γ e : A
( x, x dom Γ x X)
is_closed X e.
Proof.
(* TODO: you will need to add the new cases, i.e. "|"'s to the intro pattern. The proof then should go through *)
induction 1 as [ | ?????? IH | | | | ] in X |-*; simpl; intros Hx; try done.
{ (* var *) apply bool_decide_pack, Hx. apply elem_of_dom; eauto. }
{ (* lam *) apply IH.
intros y. rewrite elem_of_dom lookup_insert_is_Some.
intros [<- | [? Hy]]; first by apply elem_of_cons; eauto.
apply elem_of_cons. right. eapply Hx. by apply elem_of_dom.
}
{ (* anon lam *) naive_solver. }
(* everything else *)
all: repeat match goal with
| |- Is_true (_ && _) => apply andb_True; split
end.
all: try naive_solver.
Qed.
Lemma typed_weakening Γ Δ e A:
Γ e : A
Γ Δ
Δ e : A.
Proof.
(* TODO: here you will need to add the new cases to the intro pattern as well. The proof then should go through *)
induction 1 as [| Γ x e A B Htyp IH | | | | ] in Δ |-*; intros Hsub; eauto.
- (* var *) econstructor. by eapply lookup_weaken.
- (* lam *) econstructor. eapply IH; eauto. by eapply insert_mono.
Qed.
(** Typing inversion lemmas *)
Lemma var_inversion Γ (x: string) A: Γ x : A Γ !! x = Some A.
Proof. inversion 1; subst; auto. Qed.
Lemma lam_inversion Γ (x: string) e C:
Γ (λ: x, e) : C
A B, C = (A B)%ty <[x:=A]> Γ e : B.
Proof. inversion 1; subst; eauto 10. Qed.
Lemma lam_anon_inversion Γ e C:
Γ (λ: <>, e) : C
A B, C = (A B)%ty Γ e : B.
Proof. inversion 1; subst; eauto 10. Qed.
Lemma app_inversion Γ e1 e2 B:
Γ e1 e2 : B
A, Γ e1 : (A B) Γ e2 : A.
Proof. inversion 1; subst; eauto. Qed.
Lemma plus_inversion Γ e1 e2 B:
Γ e1 + e2 : B
B = Int Γ e1 : Int Γ e2 : Int.
Proof. inversion 1; subst; eauto. Qed.
(* TODO: add inversion lemmas for the new typing rules.
They will be very useful for the proofs below!
*)
Lemma typed_substitutivity e e' Γ (x: string) A B :
e' : A
(<[x := A]> Γ) e : B
Γ lang.subst x e' e : B.
Proof.
intros He'. revert B Γ; induction e as [y | y | | | | | | | | | ]; intros B Γ; simpl.
- intros Hp % var_inversion.
destruct (decide (x = y)).
+ subst. rewrite lookup_insert in Hp. injection Hp as ->.
eapply typed_weakening; [done| ]. apply map_empty_subseteq.
+ rewrite lookup_insert_ne in Hp; last done. auto.
- destruct y as [ | y].
{ intros (A' & C & -> & Hty) % lam_anon_inversion.
econstructor. destruct decide as [Heq|].
+ congruence.
+ eauto.
}
intros (A' & C & -> & Hty) % lam_inversion.
econstructor. destruct decide as [Heq|].
+ injection Heq as [= ->]. by rewrite insert_insert in Hty.
+ rewrite insert_commute in Hty; last naive_solver. eauto.
- intros (C & Hty1 & Hty2) % app_inversion. eauto.
- inversion 1; subst; auto.
- intros (-> & Hty1 & Hty2)%plus_inversion; eauto.
- (* TODO *) admit.
- (* TODO *) admit.
- (* TODO *) admit.
- (* TODO *) admit.
- (* TODO *) admit.
- (* TODO *) admit.
Admitted.
(** Canonical values *)
Lemma canonical_values_arr Γ e A B:
Γ e : (A B)
is_val e
x e', e = (λ: x, e')%E.
Proof.
inversion 1; simpl; naive_solver.
Qed.
Lemma canonical_values_int Γ e:
Γ e : Int
is_val e
n: Z, e = (#n)%E.
Proof.
inversion 1; simpl; naive_solver.
Qed.
(* TODO: add canonical forms lemmas for the new types *)
(** Progress *)
Lemma typed_progress e A:
e : A is_val e reducible e.
Proof.
remember as Γ.
(* TODO: you will need to extend the intro pattern *)
induction 1 as [| | | | Γ e1 e2 A B Hty IH1 _ IH2 | Γ e1 e2 Hty1 IH1 Hty2 IH2].
- subst. naive_solver.
- left. done.
- left. done.
- (* int *)left. done.
- (* app *)
destruct (IH2 HeqΓ) as [H2|H2]; [destruct (IH1 HeqΓ) as [H1|H1]|].
+ eapply canonical_values_arr in Hty as (x & e & ->); last done.
right. eexists.
eapply base_contextual_step, BetaS; eauto.
+ right. destruct H1 as [e1' Hstep].
eexists. eauto.
+ right. destruct H2 as [e2' H2].
eexists. eauto.
- (* plus *)
destruct (IH2 HeqΓ) as [H2|H2]; [destruct (IH1 HeqΓ) as [H1|H1]|].
+ right. eapply canonical_values_int in Hty1 as [n1 ->]; last done.
eapply canonical_values_int in Hty2 as [n2 ->]; last done.
subst. eexists; eapply base_contextual_step. eauto.
+ right. destruct H1 as [e1' Hstep]. eexists. eauto.
+ right. destruct H2 as [e2' H2]. eexists. eauto.
(* FIXME: prove the new cases *)
Admitted.
Definition ectx_typing (K: ectx) (A B: type) :=
e, e : A (fill K e) : B.
Lemma fill_typing_decompose K e A:
fill K e : A
B, e : B ectx_typing K B A.
Proof.
unfold ectx_typing; induction K in e,A |-*; simpl; eauto.
all: inversion 1; subst; edestruct IHK as [? [Hit Hty]]; eauto.
Qed.
Lemma fill_typing_compose K e A B:
e : B
ectx_typing K B A
fill K e : A.
Proof.
intros H1 H2; by eapply H2.
Qed.
Lemma typed_preservation_base_step e e' A:
e : A
base_step e e'
e' : A.
Proof.
intros Hty Hstep.
destruct Hstep as [ ]; subst.
- eapply app_inversion in Hty as (B & H1 & H2).
destruct x as [|x].
{ eapply lam_anon_inversion in H1 as (C & D & [= -> ->] & Hty). done. }
eapply lam_inversion in H1 as (C & D & Heq & Hty).
injection Heq as -> ->.
eapply typed_substitutivity; eauto.
- eapply plus_inversion in Hty as (-> & Hty1 & Hty2). constructor.
(* TODO: extend this for the new cases *)
Admitted.
Lemma typed_preservation e e' A:
e : A
contextual_step e e'
e' : A.
Proof.
intros Hty Hstep. destruct Hstep as [K e1 e2 -> -> Hstep].
eapply fill_typing_decompose in Hty as [B [H1 H2]].
eapply fill_typing_compose; last done.
by eapply typed_preservation_base_step.
Qed.
Lemma type_safety e1 e2 A:
e1 : A
rtc contextual_step e1 e2
is_val e2 reducible e2.
Proof.
induction 2; eauto using typed_progress, typed_preservation.
Qed.