parent
fb0a3219b5
commit
1f956e528e
@ -0,0 +1,49 @@
|
||||
From stdpp Require Import gmap base relations.
|
||||
From iris Require Import prelude.
|
||||
From semantics.ts.stlc_extended Require Import lang notation types.
|
||||
|
||||
(** * Big-step semantics *)
|
||||
|
||||
Implicit Types
|
||||
(Γ : typing_context)
|
||||
(v : val)
|
||||
(e : expr)
|
||||
(A : type).
|
||||
|
||||
Inductive big_step : expr → val → Prop :=
|
||||
| bs_lit (n : Z) :
|
||||
big_step (LitInt n) (LitIntV n)
|
||||
| bs_lam (x : binder) (e : expr) :
|
||||
big_step (λ: x, e)%E (λ: x, e)%V
|
||||
| bs_add e1 e2 (z1 z2 : Z) :
|
||||
big_step e1 (LitIntV z1) →
|
||||
big_step e2 (LitIntV z2) →
|
||||
big_step (Plus e1 e2) (LitIntV (z1 + z2))%Z
|
||||
| bs_app e1 e2 x e v2 v :
|
||||
big_step e1 (LamV x e) →
|
||||
big_step e2 v2 →
|
||||
big_step (subst' x (of_val v2) e) v →
|
||||
big_step (App e1 e2) v
|
||||
|
||||
(* TODO : extend the big-step semantics *)
|
||||
.
|
||||
#[export] Hint Constructors big_step : core.
|
||||
|
||||
Lemma big_step_of_val e v :
|
||||
e = of_val v →
|
||||
big_step e v.
|
||||
Proof.
|
||||
intros ->.
|
||||
induction v; simpl; eauto.
|
||||
|
||||
(* TODO : this should be fixed once you have added the right semantics *)
|
||||
Admitted.
|
||||
|
||||
|
||||
Lemma big_step_val v v' :
|
||||
big_step (of_val v) v' → v' = v.
|
||||
Proof.
|
||||
enough (∀ e, big_step e v' → e = of_val v → v' = v) by naive_solver.
|
||||
intros e Hb.
|
||||
induction Hb in v |-*; intros Heq; subst; destruct v; inversion Heq; subst; naive_solver.
|
||||
Qed.
|
@ -0,0 +1,180 @@
|
||||
From semantics.ts.stlc_extended Require Export lang.
|
||||
|
||||
(** The stepping relation *)
|
||||
|
||||
Inductive base_step : expr → expr → Prop :=
|
||||
| BetaS x e1 e2 e' :
|
||||
is_val e2 →
|
||||
e' = subst' x e2 e1 →
|
||||
base_step (App (Lam x e1) e2) e'
|
||||
| PlusS e1 e2 (n1 n2 n3 : Z):
|
||||
e1 = (LitInt n1) →
|
||||
e2 = (LitInt n2) →
|
||||
(n1 + n2)%Z = n3 →
|
||||
base_step (Plus e1 e2) (LitInt n3)
|
||||
(* TODO: extend the definition *)
|
||||
.
|
||||
|
||||
#[export] Hint Constructors base_step : core.
|
||||
|
||||
(** We define evaluation contexts *)
|
||||
Inductive ectx :=
|
||||
| HoleCtx
|
||||
| AppLCtx (K: ectx) (v2 : val)
|
||||
| AppRCtx (e1 : expr) (K: ectx)
|
||||
| PlusLCtx (K: ectx) (v2 : val)
|
||||
| PlusRCtx (e1 : expr) (K: ectx)
|
||||
(* TODO: extend the definition *)
|
||||
.
|
||||
|
||||
Fixpoint fill (K : ectx) (e : expr) : expr :=
|
||||
match K with
|
||||
| HoleCtx => e
|
||||
| AppLCtx K v2 => App (fill K e) (of_val v2)
|
||||
| AppRCtx e1 K => App e1 (fill K e)
|
||||
| PlusLCtx K v2 => Plus (fill K e) (of_val v2)
|
||||
| PlusRCtx e1 K => Plus e1 (fill K e)
|
||||
(* TODO: extend the definition *)
|
||||
end.
|
||||
|
||||
Fixpoint comp_ectx (K: ectx) (K' : ectx) : ectx :=
|
||||
match K with
|
||||
| HoleCtx => K'
|
||||
| AppLCtx K v2 => AppLCtx (comp_ectx K K') v2
|
||||
| AppRCtx e1 K => AppRCtx e1 (comp_ectx K K')
|
||||
| PlusLCtx K v2 => PlusLCtx (comp_ectx K K') v2
|
||||
| PlusRCtx e1 K => PlusRCtx e1 (comp_ectx K K')
|
||||
(* TODO: extend the definition *)
|
||||
end.
|
||||
|
||||
(** Contextual steps *)
|
||||
Inductive contextual_step (e1 : expr) (e2 : expr) : Prop :=
|
||||
Ectx_step K e1' e2' :
|
||||
e1 = fill K e1' → e2 = fill K e2' →
|
||||
base_step e1' e2' → contextual_step e1 e2.
|
||||
|
||||
#[export] Hint Constructors contextual_step : core.
|
||||
|
||||
Definition reducible (e : expr) :=
|
||||
∃ e', contextual_step e e'.
|
||||
|
||||
Definition empty_ectx := HoleCtx.
|
||||
|
||||
(** Basic properties about the language *)
|
||||
Lemma fill_empty e : fill empty_ectx e = e.
|
||||
Proof. done. Qed.
|
||||
|
||||
Lemma fill_comp (K1 K2 : ectx) e : fill K1 (fill K2 e) = fill (comp_ectx K1 K2) e.
|
||||
Proof. induction K1; simpl; congruence. Qed.
|
||||
|
||||
Lemma base_contextual_step e1 e2 :
|
||||
base_step e1 e2 → contextual_step e1 e2.
|
||||
Proof. apply Ectx_step with empty_ectx; by rewrite ?fill_empty. Qed.
|
||||
|
||||
Lemma fill_contextual_step K e1 e2 :
|
||||
contextual_step e1 e2 → contextual_step (fill K e1) (fill K e2).
|
||||
Proof.
|
||||
destruct 1 as [K' e1' e2' -> ->].
|
||||
rewrite !fill_comp. by econstructor.
|
||||
Qed.
|
||||
|
||||
(** We derive a few lemmas about contextual steps:
|
||||
these essentially provide rules for structural lifting
|
||||
akin to the structural semantics.
|
||||
*)
|
||||
Lemma contextual_step_app_l e1 e1' e2:
|
||||
is_val e2 →
|
||||
contextual_step e1 e1' →
|
||||
contextual_step (App e1 e2) (App e1' e2).
|
||||
Proof.
|
||||
intros [v <-%of_to_val]%is_val_spec Hcontextual.
|
||||
by eapply (fill_contextual_step (AppLCtx HoleCtx v)).
|
||||
Qed.
|
||||
|
||||
Lemma contextual_step_app_r e1 e2 e2':
|
||||
contextual_step e2 e2' →
|
||||
contextual_step (App e1 e2) (App e1 e2').
|
||||
Proof.
|
||||
intros Hcontextual.
|
||||
by eapply (fill_contextual_step (AppRCtx e1 HoleCtx)).
|
||||
Qed.
|
||||
|
||||
Lemma contextual_step_plus_l e1 e1' e2:
|
||||
is_val e2 →
|
||||
contextual_step e1 e1' →
|
||||
contextual_step (Plus e1 e2) (Plus e1' e2).
|
||||
Proof.
|
||||
intros [v <-%of_to_val]%is_val_spec Hcontextual.
|
||||
by eapply (fill_contextual_step (PlusLCtx HoleCtx v)).
|
||||
Qed.
|
||||
|
||||
Lemma contextual_step_plus_r e1 e2 e2':
|
||||
contextual_step e2 e2' →
|
||||
contextual_step (Plus e1 e2) (Plus e1 e2').
|
||||
Proof.
|
||||
intros Hcontextual.
|
||||
by eapply (fill_contextual_step (PlusRCtx e1 HoleCtx)).
|
||||
Qed.
|
||||
|
||||
Lemma contextual_step_pair_l e1 e1' e2:
|
||||
is_val e2 →
|
||||
contextual_step e1 e1' →
|
||||
contextual_step (Pair e1 e2) (Pair e1' e2).
|
||||
Proof.
|
||||
(* TODO: exercise *)
|
||||
Admitted.
|
||||
|
||||
|
||||
Lemma contextual_step_pair_r e1 e2 e2':
|
||||
contextual_step e2 e2' →
|
||||
contextual_step (Pair e1 e2) (Pair e1 e2').
|
||||
Proof.
|
||||
(* TODO: exercise *)
|
||||
Admitted.
|
||||
|
||||
|
||||
Lemma contextual_step_fst e e':
|
||||
contextual_step e e' →
|
||||
contextual_step (Fst e) (Fst e').
|
||||
Proof.
|
||||
(* TODO: exercise *)
|
||||
Admitted.
|
||||
|
||||
|
||||
Lemma contextual_step_snd e e':
|
||||
contextual_step e e' →
|
||||
contextual_step (Snd e) (Snd e').
|
||||
Proof.
|
||||
(* TODO: exercise *)
|
||||
Admitted.
|
||||
|
||||
|
||||
Lemma contextual_step_injl e e':
|
||||
contextual_step e e' →
|
||||
contextual_step (InjL e) (InjL e').
|
||||
Proof.
|
||||
(* TODO: exercise *)
|
||||
Admitted.
|
||||
|
||||
|
||||
Lemma contextual_step_injr e e':
|
||||
contextual_step e e' →
|
||||
contextual_step (InjR e) (InjR e').
|
||||
Proof.
|
||||
(* TODO: exercise *)
|
||||
Admitted.
|
||||
|
||||
|
||||
Lemma contextual_step_case e e' e1 e2:
|
||||
contextual_step e e' →
|
||||
contextual_step (Case e e1 e2) (Case e' e1 e2).
|
||||
Proof.
|
||||
(* TODO: exercise *)
|
||||
Admitted.
|
||||
|
||||
|
||||
#[global]
|
||||
Hint Resolve
|
||||
contextual_step_app_l contextual_step_app_r contextual_step_plus_l contextual_step_plus_r
|
||||
contextual_step_case contextual_step_fst contextual_step_injl contextual_step_injr
|
||||
contextual_step_pair_l contextual_step_pair_r contextual_step_snd : core.
|
@ -0,0 +1,175 @@
|
||||
From stdpp Require Export binders strings.
|
||||
From iris.prelude Require Import options.
|
||||
From semantics.lib Require Export maps.
|
||||
|
||||
Declare Scope expr_scope.
|
||||
Declare Scope val_scope.
|
||||
Delimit Scope expr_scope with E.
|
||||
Delimit Scope val_scope with V.
|
||||
|
||||
Inductive expr :=
|
||||
(* Base lambda calculus *)
|
||||
| Var (x : string)
|
||||
| Lam (x : binder) (e : expr)
|
||||
| App (e1 e2 : expr)
|
||||
(* Base types and their operations *)
|
||||
| LitInt (n: Z)
|
||||
| Plus (e1 e2 : expr)
|
||||
(* Products *)
|
||||
| Pair (e1 e2 : expr)
|
||||
| Fst (e : expr)
|
||||
| Snd (e : expr)
|
||||
(* Sums *)
|
||||
| InjL (e : expr)
|
||||
| InjR (e : expr)
|
||||
| Case (e0 : expr) (e1 : expr) (e2 : expr).
|
||||
|
||||
Bind Scope expr_scope with expr.
|
||||
|
||||
Inductive val :=
|
||||
| LitIntV (n: Z)
|
||||
| LamV (x : binder) (e : expr)
|
||||
| PairV (v1 v2 : val)
|
||||
| InjLV (v : val)
|
||||
| InjRV (v : val)
|
||||
.
|
||||
|
||||
Bind Scope val_scope with val.
|
||||
|
||||
Fixpoint of_val (v : val) : expr :=
|
||||
match v with
|
||||
| LitIntV n => LitInt n
|
||||
| LamV x e => Lam x e
|
||||
| PairV v1 v2 => Pair (of_val v1) (of_val v2)
|
||||
| InjLV v => InjL (of_val v)
|
||||
| InjRV v => InjR (of_val v)
|
||||
end.
|
||||
|
||||
Fixpoint to_val (e : expr) : option val :=
|
||||
match e with
|
||||
| LitInt n => Some $ LitIntV n
|
||||
| Lam x e => Some (LamV x e)
|
||||
| Pair e1 e2 =>
|
||||
to_val e1 ≫= (λ v1, to_val e2 ≫= (λ v2, Some $ PairV v1 v2))
|
||||
| InjL e => to_val e ≫= (λ v, Some $ InjLV v)
|
||||
| InjR e => to_val e ≫= (λ v, Some $ InjRV v)
|
||||
| _ => None
|
||||
end.
|
||||
|
||||
(** Equality and other typeclass stuff *)
|
||||
Lemma to_of_val v : to_val (of_val v) = Some v.
|
||||
Proof.
|
||||
by induction v; simplify_option_eq; repeat f_equal; try apply (proof_irrel _).
|
||||
Qed.
|
||||
|
||||
Lemma of_to_val e v : to_val e = Some v → of_val v = e.
|
||||
Proof.
|
||||
revert v; induction e; intros v ?; simplify_option_eq; auto with f_equal.
|
||||
Qed.
|
||||
|
||||
#[export] Instance of_val_inj : Inj (=) (=) of_val.
|
||||
Proof. by intros ?? Hv; apply (inj Some); rewrite <-!to_of_val, Hv. Qed.
|
||||
|
||||
(** structural computational version *)
|
||||
Fixpoint is_val (e : expr) : Prop :=
|
||||
match e with
|
||||
| LitInt l => True
|
||||
| Lam x e => True
|
||||
| Pair e1 e2 => is_val e1 ∧ is_val e2
|
||||
| InjL e => is_val e
|
||||
| InjR e => is_val e
|
||||
| _ => False
|
||||
end.
|
||||
Lemma is_val_spec e : is_val e ↔ ∃ v, to_val e = Some v.
|
||||
Proof.
|
||||
induction e as [ | ? e IH | e1 IH1 e2 IH2 | | e1 IH1 e2 IH2 | e1 IH1 e2 IH2 | e IH | e IH | e IH | e IH | e1 IH1 e2 IH2 e3 IH3];
|
||||
simpl; (split; [ | intros (v & Heq)]); simplify_option_eq; try done; eauto.
|
||||
- rewrite IH1, IH2. intros [(v1 & ->) (v2 & ->)]. eauto.
|
||||
- rewrite IH1, IH2. eauto.
|
||||
- rewrite IH. intros (v & ->). eauto.
|
||||
- apply IH. eauto.
|
||||
- rewrite IH. intros (v & ->); eauto.
|
||||
- apply IH. eauto.
|
||||
Qed.
|
||||
|
||||
Ltac simplify_val :=
|
||||
repeat match goal with
|
||||
| H: to_val (of_val ?v) = ?o |- _ => rewrite to_of_val in H
|
||||
| H: is_val ?e |- _ => destruct (proj1 (is_val_spec e) H) as (? & ?); clear H
|
||||
end.
|
||||
|
||||
(* Misc *)
|
||||
Lemma is_val_of_val v : is_val (of_val v).
|
||||
Proof. apply is_val_spec. rewrite to_of_val. eauto. Qed.
|
||||
|
||||
(** Substitution *)
|
||||
Fixpoint subst (x : string) (es : expr) (e : expr) : expr :=
|
||||
match e with
|
||||
| LitInt _ => e
|
||||
| Var y => if decide (x = y) then es else Var y
|
||||
| Lam y e =>
|
||||
Lam y $ if decide (BNamed x = y) then e else subst x es e
|
||||
| App e1 e2 => App (subst x es e1) (subst x es e2)
|
||||
| Plus e1 e2 => Plus (subst x es e1) (subst x es e2)
|
||||
| Pair e1 e2 => Pair (subst x es e1) (subst x es e2)
|
||||
| Fst e => Fst (subst x es e)
|
||||
| Snd e => Snd (subst x es e)
|
||||
| InjL e => InjL (subst x es e)
|
||||
| InjR e => InjR (subst x es e)
|
||||
| Case e0 e1 e2 => Case (subst x es e0) (subst x es e1) (subst x es e2)
|
||||
end.
|
||||
|
||||
Definition subst' (mx : binder) (es : expr) : expr → expr :=
|
||||
match mx with BNamed x => subst x es | BAnon => id end.
|
||||
|
||||
(** Closed terms **)
|
||||
|
||||
Fixpoint is_closed (X : list string) (e : expr) : bool :=
|
||||
match e with
|
||||
| Var x => bool_decide (x ∈ X)
|
||||
| Lam x e => is_closed (x :b: X) e
|
||||
| LitInt _ => true
|
||||
| Fst e | Snd e | InjL e | InjR e => is_closed X e
|
||||
| App e1 e2 | Plus e1 e2 | Pair e1 e2 => is_closed X e1 && is_closed X e2
|
||||
| Case e0 e1 e2 =>
|
||||
is_closed X e0 && is_closed X e1 && is_closed X e2
|
||||
end.
|
||||
|
||||
(** [closed] states closedness as a Coq proposition, through the [Is_true] transformer. *)
|
||||
Definition closed (X : list string) (e : expr) : Prop := Is_true (is_closed X e).
|
||||
#[export] Instance closed_proof_irrel X e : ProofIrrel (closed X e).
|
||||
Proof. unfold closed. apply _. Qed.
|
||||
#[export] Instance closed_dec X e : Decision (closed X e).
|
||||
Proof. unfold closed. apply _. Defined.
|
||||
|
||||
(** closed expressions *)
|
||||
Lemma is_closed_weaken X Y e : is_closed X e → X ⊆ Y → is_closed Y e.
|
||||
Proof. revert X Y; induction e; naive_solver (eauto; set_solver). Qed.
|
||||
|
||||
Lemma is_closed_weaken_nil X e : is_closed [] e → is_closed X e.
|
||||
Proof. intros. by apply is_closed_weaken with [], list_subseteq_nil. Qed.
|
||||
|
||||
Lemma is_closed_subst X e x es :
|
||||
is_closed [] es → is_closed (x :: X) e → is_closed X (subst x es e).
|
||||
Proof.
|
||||
intros ?.
|
||||
induction e in X |-*; simpl; intros ?; destruct_and?; split_and?; simplify_option_eq;
|
||||
try match goal with
|
||||
| H : ¬(_ ∧ _) |- _ => apply not_and_l in H as [?%dec_stable|?%dec_stable]
|
||||
end; eauto using is_closed_weaken with set_solver.
|
||||
Qed.
|
||||
Lemma is_closed_do_subst' X e x es :
|
||||
is_closed [] es → is_closed (x :b: X) e → is_closed X (subst' x es e).
|
||||
Proof. destruct x; eauto using is_closed_subst. Qed.
|
||||
|
||||
(** Substitution lemmas *)
|
||||
Lemma subst_is_closed X e x es : is_closed X e → x ∉ X → subst x es e = e.
|
||||
Proof.
|
||||
induction e in X |-*; simpl; rewrite ?bool_decide_spec, ?andb_True; intros ??;
|
||||
repeat case_decide; simplify_eq; simpl; f_equal; intuition eauto with set_solver.
|
||||
Qed.
|
||||
|
||||
Lemma subst_is_closed_nil e x es : is_closed [] e → subst x es e = e.
|
||||
Proof. intros. apply subst_is_closed with []; set_solver. Qed.
|
||||
Lemma subst'_is_closed_nil e x es : is_closed [] e → subst' x es e = e.
|
||||
Proof. intros. destruct x as [ | x]. { done. } by apply subst_is_closed_nil. Qed.
|
@ -0,0 +1,56 @@
|
||||
From semantics.ts.stlc_extended Require Export lang.
|
||||
Set Default Proof Using "Type".
|
||||
|
||||
|
||||
(** Coercions to make programs easier to type. *)
|
||||
Coercion of_val : val >-> expr.
|
||||
Coercion App : expr >-> Funclass.
|
||||
Coercion Var : string >-> expr.
|
||||
|
||||
(** Define some derived forms. *)
|
||||
Notation Let x e1 e2 := (App (Lam x e2) e1) (only parsing).
|
||||
Notation Seq e1 e2 := (Let BAnon e1 e2) (only parsing).
|
||||
Notation Match e0 x1 e1 x2 e2 := (Case e0 (Lam x1 e1) (Lam x2 e2)) (only parsing).
|
||||
|
||||
(* No scope for the values, does not conflict and scope is often not inferred
|
||||
properly. *)
|
||||
Notation "# l" := (LitIntV l%Z%V%stdpp) (at level 8, format "# l").
|
||||
Notation "# l" := (LitInt l%Z%E%stdpp) (at level 8, format "# l") : expr_scope.
|
||||
|
||||
(** Syntax inspired by Coq/Ocaml. Constructions with higher precedence come
|
||||
first. *)
|
||||
Notation "( e1 , e2 , .. , en )" := (Pair .. (Pair e1 e2) .. en) : expr_scope.
|
||||
Notation "( e1 , e2 , .. , en )" := (PairV .. (PairV e1 e2) .. en) : val_scope.
|
||||
|
||||
Notation "'match:' e0 'with' 'InjL' x1 => e1 | 'InjR' x2 => e2 'end'" :=
|
||||
(Match e0 x1%binder e1 x2%binder e2)
|
||||
(e0, x1, e1, x2, e2 at level 200,
|
||||
format "'[hv' 'match:' e0 'with' '/ ' '[' 'InjL' x1 => '/ ' e1 ']' '/' '[' | 'InjR' x2 => '/ ' e2 ']' '/' 'end' ']'") : expr_scope.
|
||||
Notation "'match:' e0 'with' 'InjR' x1 => e1 | 'InjL' x2 => e2 'end'" :=
|
||||
(Match e0 x2%binder e2 x1%binder e1)
|
||||
(e0, x1, e1, x2, e2 at level 200, only parsing) : expr_scope.
|
||||
|
||||
Notation "e1 + e2" := (Plus e1%E e2%E) : expr_scope.
|
||||
|
||||
(*Notation "~ e" := (UnOp NegOp e%E) (at level 75, right associativity) : expr_scope.*)
|
||||
|
||||
Notation "λ: x , e" := (Lam x%binder e%E)
|
||||
(at level 200, x at level 1, e at level 200,
|
||||
format "'[' 'λ:' x , '/ ' e ']'") : expr_scope.
|
||||
Notation "λ: x y .. z , e" := (Lam x%binder (Lam y%binder .. (Lam z%binder e%E) ..))
|
||||
(at level 200, x, y, z at level 1, e at level 200,
|
||||
format "'[' 'λ:' x y .. z , '/ ' e ']'") : expr_scope.
|
||||
|
||||
Notation "λ: x , e" := (LamV x%binder e%E)
|
||||
(at level 200, x at level 1, e at level 200,
|
||||
format "'[' 'λ:' x , '/ ' e ']'") : val_scope.
|
||||
Notation "λ: x y .. z , e" := (LamV x%binder (Lam y%binder .. (Lam z%binder e%E) .. ))
|
||||
(at level 200, x, y, z at level 1, e at level 200,
|
||||
format "'[' 'λ:' x y .. z , '/ ' e ']'") : val_scope.
|
||||
|
||||
Notation "'let:' x := e1 'in' e2" := (Lam x%binder e2%E e1%E)
|
||||
(at level 200, x at level 1, e1, e2 at level 200,
|
||||
format "'[' 'let:' x := '[' e1 ']' 'in' '/' e2 ']'") : expr_scope.
|
||||
Notation "e1 ;; e2" := (Lam BAnon e2%E e1%E)
|
||||
(at level 100, e2 at level 200,
|
||||
format "'[' '[hv' '[' e1 ']' ;; ']' '/' e2 ']'") : expr_scope.
|
Loading…
Reference in new issue