release exercise 07

amethyst
Benjamin Peters 11 months ago
parent d9bd2ee560
commit 4f600972e5

@ -57,9 +57,21 @@ theories/type_systems/systemf_mu/notation.v
theories/type_systems/systemf_mu/types.v theories/type_systems/systemf_mu/types.v
theories/type_systems/systemf_mu/tactics.v theories/type_systems/systemf_mu/tactics.v
theories/type_systems/systemf_mu/pure.v theories/type_systems/systemf_mu/pure.v
theories/type_systems/systemf_mu/pure_sol.v
theories/type_systems/systemf_mu/untyped_encoding.v theories/type_systems/systemf_mu/untyped_encoding.v
theories/type_systems/systemf_mu/parallel_subst.v theories/type_systems/systemf_mu/parallel_subst.v
theories/type_systems/systemf_mu/logrel.v theories/type_systems/systemf_mu/logrel.v
theories/type_systems/systemf_mu/logrel_sol.v
# SystemF + Mu + State
theories/type_systems/systemf_mu_state/locations.v
theories/type_systems/systemf_mu_state/lang.v
theories/type_systems/systemf_mu_state/notation.v
theories/type_systems/systemf_mu_state/types.v
theories/type_systems/systemf_mu_state/tactics.v
theories/type_systems/systemf_mu_state/execution.v
theories/type_systems/systemf_mu_state/parallel_subst.v
theories/type_systems/systemf_mu_state/logrel.v
# By removing the # below, you can add the exercise sheets to make # By removing the # below, you can add the exercise sheets to make
#theories/type_systems/warmup/warmup.v #theories/type_systems/warmup/warmup.v
@ -77,3 +89,5 @@ theories/type_systems/systemf_mu/logrel.v
#theories/type_systems/systemf/exercises05.v #theories/type_systems/systemf/exercises05.v
#theories/type_systems/systemf/exercises05_sol.v #theories/type_systems/systemf/exercises05_sol.v
#theories/type_systems/systemf_mu/exercises06.v #theories/type_systems/systemf_mu/exercises06.v
#theories/type_systems/systemf_mu/exercises06_sol.v
#theories/type_systems/systemf_mu_state/exercises07.v

@ -0,0 +1,450 @@
From stdpp Require Import gmap base relations.
From iris Require Import prelude.
From semantics.ts.systemf_mu_state Require Import lang notation.
(* TODO: everywhere replace the metavar σ for heaps with h *)
(** ** Deterministic reduction *)
Record det_step (e1 : expr) (e2 : expr) := {
det_step_safe h : reducible e1 h;
det_step_det e2' h h' :
contextual_step (e1, h) (e2', h') e2' = e2 h' = h
}.
Record det_base_step (e1 e2 : expr) := {
det_base_step_safe h : base_reducible e1 h;
det_base_step_det e2' h h' :
base_step (e1, h) (e2', h') e2' = e2 h' = h
}.
Lemma det_base_step_det_step e1 e2 : det_base_step e1 e2 det_step e1 e2.
Proof.
intros [Hp1 Hp2]. split.
- intros h. destruct (Hp1 h) as (e2' & h' & ?).
eexists e2', h'. by apply base_contextual_step.
- intros e2' h h' ?%base_reducible_contextual_step; [ | done]. by eapply Hp2.
Qed.
(** *** Pure execution lemmas *)
Local Ltac inv_step :=
repeat match goal with
| H : to_val _ = Some _ |- _ => apply of_to_val in H
| H : base_step (?e, ?σ) (?e2, ?σ2) |- _ =>
try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
and should thus better be avoided. *)
inversion H; subst; clear H
end.
Local Ltac solve_exec_safe := intros; subst; eexists _, _; econstructor; eauto.
Local Ltac solve_exec_detdet := simpl; intros; inv_step; try done.
Local Ltac solve_det_exec :=
subst; intros; apply det_base_step_det_step;
constructor; [solve_exec_safe | solve_exec_detdet].
Lemma det_step_beta x e e2 :
is_val e2
det_step (App (@Lam x e) e2) (subst' x e2 e).
Proof. solve_det_exec. Qed.
Lemma det_step_tbeta e :
det_step ((Λ, e) <>) e.
Proof. solve_det_exec. Qed.
Lemma det_step_unpack e1 e2 x :
is_val e1
det_step (unpack (pack e1) as x in e2) (subst' x e1 e2).
Proof. solve_det_exec. Qed.
Lemma det_step_unop op e v v' :
to_val e = Some v
un_op_eval op v = Some v'
det_step (UnOp op e) v'.
Proof. solve_det_exec. by simplify_eq. Qed.
Lemma det_step_binop op e1 v1 e2 v2 v' :
to_val e1 = Some v1
to_val e2 = Some v2
bin_op_eval op v1 v2 = Some v'
det_step (BinOp op e1 e2) v'.
Proof. solve_det_exec. by simplify_eq. Qed.
Lemma det_step_if_true e1 e2 :
det_step (if: #true then e1 else e2) e1.
Proof. solve_det_exec. Qed.
Lemma det_step_if_false e1 e2 :
det_step (if: #false then e1 else e2) e2.
Proof. solve_det_exec. Qed.
Lemma det_step_fst e1 e2 :
is_val e1
is_val e2
det_step (Fst (e1, e2)) e1.
Proof. solve_det_exec. Qed.
Lemma det_step_snd e1 e2 :
is_val e1
is_val e2
det_step (Snd (e1, e2)) e2.
Proof. solve_det_exec. Qed.
Lemma det_step_casel e e1 e2 :
is_val e
det_step (Case (InjL e) e1 e2) (e1 e).
Proof. solve_det_exec. Qed.
Lemma det_step_caser e e1 e2 :
is_val e
det_step (Case (InjR e) e1 e2) (e2 e).
Proof. solve_det_exec. Qed.
Lemma det_step_unroll e :
is_val e
det_step (unroll (roll e)) e.
Proof. solve_det_exec. Qed.
(** ** n-step reduction *)
(** Reduce in n steps to an irreducible expression.
(this is ^n from the lecture notes)
*)
Definition red_nsteps (n : nat) e h e' h' := nsteps contextual_step n (e, h) (e', h') irreducible e' h'.
Lemma det_step_red e e' e'' h h'' n :
det_step e e'
red_nsteps n e h e'' h''
1 n red_nsteps (n - 1) e' h e'' h''.
Proof.
intros [Hprog Hstep] Hred.
specialize (Hprog h).
destruct Hred as [Hred Hirred].
destruct n as [ | n].
{ inversion Hred; subst.
exfalso; eapply not_reducible; done.
}
inversion Hred as [ | ??[e1 h1]? Hstep0]; subst. simpl.
apply Hstep in Hstep0 as [<- <-].
split; first lia.
replace (n - 0) with n by lia. done.
Qed.
Lemma contextual_step_red_nsteps n e e' e'' h h' h'':
contextual_step (e, h) (e', h')
red_nsteps n e' h' e'' h''
red_nsteps (S n) e h e'' h''.
Proof.
intros Hstep [Hsteps Hirred].
split; last done.
by econstructor.
Qed.
Lemma nsteps_val_inv n v e' h h' :
red_nsteps n (of_val v) h e' h' n = 0 e' = of_val v h' = h.
Proof.
intros [Hred Hirred]; cbn in *.
destruct n as [ | n].
- inversion Hred; subst. done.
- inversion Hred as [ | ??[e1 h1]]; subst. exfalso. eapply val_irreducible; last done.
rewrite to_of_val. eauto.
Qed.
Lemma nsteps_val_inv' n v e e' h h' :
to_val e = Some v
red_nsteps n e h e' h' n = 0 e' = of_val v h' = h.
Proof. intros Ht. rewrite -(of_to_val _ _ Ht). apply nsteps_val_inv. Qed.
Lemma red_nsteps_fill K k e e' h h' :
red_nsteps k (fill K e) h e' h'
j e'' h'', j k
red_nsteps j e h e'' h''
red_nsteps (k - j) (fill K e'') h'' e' h'.
Proof.
intros [Hsteps Hirred].
induction k as [ | k IH] in e, e', h, h', Hsteps, Hirred |-*.
- inversion Hsteps; subst.
exists 0, e, h'. split_and!; [done | split | ].
+ constructor.
+ by eapply irreducible_fill.
+ done.
- inversion Hsteps as [ | n [e1 h1] [e2 h2] [e3 h3] Hstep Hsteps' Heq1 Heq2 Heq3]. subst.
destruct (contextual_ectx_step_case _ _ _ _ _ Hstep) as [(e'' & -> & Hstep') | Hv].
+ apply IH in Hsteps' as (j & e3 & h3 & ? & Hsteps' & Hsteps''); last done.
eexists (S j), _, _. split_and!; [lia | | done ].
eapply contextual_step_red_nsteps; done.
+ exists 0, e, h. split_and!; [ lia | | ].
* split; [constructor | ].
apply val_irreducible. by apply is_val_spec.
* simpl. by eapply contextual_step_red_nsteps.
Qed.
(** * Heap execution lemmas *)
Lemma new_step_inv v e e' σ σ' :
to_val e = Some v
base_step (New e, σ) (e', σ')
l, e' = (Lit $ LitLoc l) σ' = init_heap l 1 v σ σ !! l = None.
Proof.
intros <-%of_to_val.
inversion 1; subst.
rewrite to_of_val in H5. injection H5 as [= ->].
eauto.
Qed.
Lemma new_nsteps_inv n v e e' σ σ' :
to_val e = Some v
red_nsteps n (New e) σ e' σ'
(n = 1 base_step (New e, σ) (e', σ')).
Proof.
intros <-%of_to_val [Hsteps Hirred%not_reducible].
inversion Hsteps; subst.
- exfalso; apply Hirred. eapply base_reducible_reducible. eexists _, _. eapply new_fresh.
- destruct y.
eapply base_reducible_contextual_step in H.
2: { eexists _, _. apply new_fresh. }
inversion H0; subst.
{ eauto. }
eapply new_step_inv in H; last apply to_of_val.
destruct H as (l & -> & -> & ?).
destruct y. apply val_stuck in H1. done.
Qed.
Lemma load_step_inv e v σ e' σ' :
to_val e = Some v
base_step (Load e, σ) (e', σ')
(l : loc) v', v = #l σ !! l = Some v' e' = of_val v' σ' = σ.
Proof.
intros <-%of_to_val.
inversion 1; subst.
symmetry in H0. apply of_val_lit in H0 as ->.
eauto 8.
Qed.
Definition sub_redexes_are_values (e : expr) :=
K e', e = fill K e' to_val e' = None K = empty_ectx.
Lemma contextual_base_reducible e σ :
reducible e σ sub_redexes_are_values e base_reducible e σ.
Proof.
intros (e' & σ' & Hstep) ?. inversion Hstep; subst.
assert (K = empty_ectx) as -> by eauto 10 using val_base_stuck.
rewrite fill_empty /base_reducible; eauto.
Qed.
Ltac solve_sub_redexes_are_values :=
let K := fresh "K" in
let e' := fresh "e'" in
let Heq := fresh "Heq" in
let Hv := fresh "Hv" in
let IH := fresh "IH" in
let Ki := fresh "Ki" in
let Ki' := fresh "Ki'" in
intros K e' Heq Hv;
destruct K as [ | Ki K]; first (done);
exfalso; induction K as [ | Ki' K IH] in e', Ki, Hv, Heq |-*;
[destruct Ki; inversion Heq; subst; simplify_val; cbn in *; congruence
| eapply IH; first (by rewrite Heq);
apply fill_item_no_val; done].
Lemma load_nsteps_inv n v e e' σ σ' :
to_val e = Some v
red_nsteps n (Load e) σ e' σ'
(n = 0 σ' = σ e' = Load e ¬ reducible (Load e) σ)
(n = 1 base_step (Load e, σ) (e', σ')).
Proof.
intros <-%of_to_val [Hsteps Hirred%not_reducible].
inversion Hsteps; subst.
- by left.
- right. destruct y.
eapply base_reducible_contextual_step in H.
2: { eapply contextual_base_reducible; [eexists _, _; done | solve_sub_redexes_are_values]. }
inversion H0; subst.
{ eauto. }
eapply load_step_inv in H as (l & ? & -> & ? & -> & ->); last apply to_of_val.
destruct y. apply val_stuck in H1. simplify_val. done.
Qed.
(** useful derived lemma when we know upfront that l satisfies some invariant [P] *)
Lemma load_nsteps_inv' n l e e' σ σ' (P : val Prop) :
to_val e = Some (LitV $ LitLoc l)
( v', σ !! l = Some v' P v')
red_nsteps n (Load e) σ e' σ'
v' : val, n = 1 e' = v' σ' = σ σ !! l = Some v' P v'.
Proof.
intros <-%of_to_val (v' & Hlook & HP) Hred.
eapply load_nsteps_inv in Hred; last done.
destruct Hred as [(-> & -> & -> & Hnred) | (-> & Hstep)].
- exfalso; eapply Hnred. eexists v', _.
eapply base_contextual_step. econstructor. done.
- exists v'. split; first done.
eapply load_step_inv in Hstep; last done.
destruct Hstep as (l' & v'' & [= <-] & ? & -> & ->).
split; first by simplify_option_eq.
split; last done. econstructor; done.
Qed.
Lemma store_step_inv v1 v2 σ e' σ' :
base_step (Store (of_val v1) (of_val v2), σ) (e', σ')
(l : loc) v', v1 = #l σ !! l = Some v' e' = Lit LitUnit σ' = <[l := v2]> σ.
Proof.
inversion 1; subst.
symmetry in H0. apply of_val_lit in H0 as ->.
simplify_val. simplify_option_eq.
eauto 8.
Qed.
Lemma store_nsteps_inv n v1 v2 e' σ σ' :
red_nsteps n (Store (of_val v1) (of_val v2)) σ e' σ'
(n = 0 σ' = σ e' = Store (of_val v1) (of_val v2) ¬ reducible (Store (of_val v1) (of_val v2)) σ)
(n = 1 base_step (Store (of_val v1) (of_val v2), σ) (e', σ')).
Proof.
intros [Hsteps Hirred%not_reducible].
inversion Hsteps; subst.
- by left.
- right. destruct y.
eapply base_reducible_contextual_step in H.
2: { eapply contextual_base_reducible; [eexists _, _; done | solve_sub_redexes_are_values]. }
inversion H0; subst.
{ eauto. }
apply store_step_inv in H as (l & ? & -> & ? & -> & ->).
destruct y. apply val_stuck in H1. simplify_val. done.
Qed.
Lemma store_nsteps_inv' n e1 e2 v0 v l e' σ σ' :
to_val e1 = Some (LitV $ LitLoc l)
to_val e2 = Some v
σ !! l = Some v0
red_nsteps n (Store e1 e2) σ e' σ'
n = 1 e' = Lit $ LitUnit σ' = <[l := v ]> σ.
Proof.
intros <-%of_to_val <-%of_to_val Hlook Hred%store_nsteps_inv.
destruct Hred as [(-> & -> & -> & Hnred) | (-> & Hb)].
- exfalso; eapply Hnred.
eexists #(), _.
eapply base_contextual_step. econstructor; [done | apply to_of_val ].
- eapply store_step_inv in Hb. destruct Hb as (l' & v' & [= <-] & Hlook' & -> & ->).
simplify_option_eq. done.
Qed.
(** Additionally useful stepping lemmas *)
Lemma app_step_r (e1 e2 e2': expr) h h' :
contextual_step (e2, h) (e2', h') contextual_step (e1 e2, h) (e1 e2', h').
Proof. by apply (fill_contextual_step [AppRCtx _]). Qed.
Lemma app_step_l (e1 e1' e2: expr) h h' :
contextual_step (e1, h) (e1', h') is_val e2 contextual_step (e1 e2, h) (e1' e2, h').
Proof.
intros ? (v & Hv)%is_val_spec.
rewrite <-(of_to_val _ _ Hv).
by apply (fill_contextual_step [AppLCtx _]).
Qed.
Lemma app_step_beta (x: string) (e e': expr) h :
is_val e' is_closed [x] e contextual_step ((λ: x, e)%E e', h) (lang.subst x e' e, h).
Proof.
intros Hval Hclosed. eapply base_contextual_step, BetaS; eauto.
Qed.
Lemma unroll_roll_step (e: expr) h :
is_val e contextual_step ((unroll (roll e))%E, h) (e, h).
Proof.
intros ?; by eapply base_contextual_step, UnrollS.
Qed.
Lemma fill_reducible K e h :
reducible e h reducible (fill K e) h.
Proof.
intros (e' & h' & Hstep).
exists (fill K e'), h'. eapply fill_contextual_step. done.
Qed.
Lemma reducible_contextual_step_case K e e' h1 h2 :
contextual_step (fill K e, h1) (e', h2)
reducible e h1
e'', e' = fill K e'' contextual_step (e, h1) (e'', h2).
Proof.
intros [ | Hval]%contextual_ectx_step_case Hred; first done.
exfalso. apply is_val_spec in Hval as (v & Hval).
apply reducible_not_val in Hred. congruence.
Qed.
(** Contextual lifting lemmas for deterministic reduction *)
Tactic Notation "lift_det" uconstr(ctx) :=
intros;
let Hs := fresh in
match goal with
| H : det_step _ _ |- _ => destruct H as [? Hs]
end;
simplify_val; econstructor;
[intros; by eapply (fill_reducible ctx) |
intros ? ? ? (? & -> & [-> ->]%Hs)%(reducible_contextual_step_case ctx); done ].
Lemma det_step_pair_r e1 e2 e2' :
det_step e2 e2'
det_step (e1, e2)%E (e1, e2')%E.
Proof. lift_det [PairRCtx _]. Qed.
Lemma det_step_pair_l e1 e1' e2 :
is_val e2
det_step e1 e1'
det_step (e1, e2)%E (e1', e2)%E.
Proof. lift_det [PairLCtx _]. Qed.
Lemma det_step_binop_r e1 e2 e2' op :
det_step e2 e2'
det_step (BinOp op e1 e2)%E (BinOp op e1 e2')%E.
Proof. lift_det [BinOpRCtx _ _]. Qed.
Lemma det_step_binop_l e1 e1' e2 op :
is_val e2
det_step e1 e1'
det_step (BinOp op e1 e2)%E (BinOp op e1' e2)%E.
Proof. lift_det [BinOpLCtx _ _]. Qed.
Lemma det_step_if e e' e1 e2 :
det_step e e'
det_step (If e e1 e2)%E (If e' e1 e2)%E.
Proof. lift_det [IfCtx _ _]. Qed.
Lemma det_step_app_r e1 e2 e2' :
det_step e2 e2'
det_step (App e1 e2)%E (App e1 e2')%E.
Proof. lift_det [AppRCtx _]. Qed.
Lemma det_step_app_l e1 e1' e2 :
is_val e2
det_step e1 e1'
det_step (App e1 e2)%E (App e1' e2)%E.
Proof. lift_det [AppLCtx _]. Qed.
Lemma det_step_snd_lift e e' :
det_step e e'
det_step (Snd e)%E (Snd e')%E.
Proof. lift_det [SndCtx]. Qed.
Lemma det_step_fst_lift e e' :
det_step e e'
det_step (Fst e)%E (Fst e')%E.
Proof. lift_det [FstCtx]. Qed.
Lemma det_step_store_r e1 e2 e2' :
det_step e2 e2'
det_step (Store e1 e2)%E (Store e1 e2')%E.
Proof. lift_det [StoreRCtx _]. Qed.
Lemma det_step_store_l e1 e1' e2 :
is_val e2
det_step e1 e1'
det_step (Store e1 e2)%E (Store e1' e2)%E.
Proof. lift_det [StoreLCtx _]. Qed.
#[global]
Hint Resolve app_step_r app_step_l app_step_beta unroll_roll_step : core.
#[global]
Hint Extern 1 (is_val _) => (simpl; fast_done) : core.
#[global]
Hint Immediate is_val_of_val : core.
#[global]
Hint Resolve det_step_beta det_step_tbeta det_step_unpack det_step_unop det_step_binop det_step_if_true det_step_if_false det_step_fst det_step_snd det_step_casel det_step_caser det_step_unroll : core.
#[global]
Hint Resolve det_step_pair_r det_step_pair_l det_step_binop_r det_step_binop_l det_step_if det_step_app_r det_step_app_l det_step_snd_lift det_step_fst_lift det_step_store_l det_step_store_r : core.
#[global]
Hint Constructors nsteps : core.
#[global]
Hint Extern 1 (is_val _) => simpl : core.
Ltac do_det_step :=
match goal with
| |- nsteps det_step _ _ _ => econstructor 2; first do_det_step
| |- det_step _ _ => simpl; solve[eauto 10]
end.

@ -0,0 +1,127 @@
From iris Require Import prelude.
From semantics.ts.systemf_mu_state Require Import lang notation parallel_subst tactics execution.
(** * Exercise Sheet 7 *)
(** Exercise 1: Stack (LN Exercise 45) *)
(* We use lists to model our stack *)
Section lists.
Context (A : type).
Definition list_type : type :=
μ: Unit + (A.[ren (+1)] × #0).
Definition nil_val : val :=
RollV (InjLV (LitV LitUnit)).
Definition cons_val (v : val) (xs : val) : val :=
RollV (InjRV (v, xs)).
Definition cons_expr (v : expr) (xs : expr) : expr :=
roll (InjR (v, xs)).
Definition list_case : val :=
Λ, λ: "l" "n" "hf", match: unroll "l" with InjL <> => "n" | InjR "h" => "hf" (Fst "h") (Snd "h") end.
Lemma nil_val_typed Σ n Γ :
type_wf n A
TY Σ; n; Γ nil_val : list_type.
Proof.
intros. solve_typing.
Qed.
Lemma cons_val_typed Σ n Γ (v xs : val) :
type_wf n A
TY Σ; n; Γ v : A
TY Σ; n; Γ xs : list_type
TY Σ; n; Γ cons_val v xs : list_type.
Proof.
intros. simpl. solve_typing.
Qed.
Lemma cons_expr_typed Σ n Γ (x xs : expr) :
type_wf n A
TY Σ; n; Γ x : A
TY Σ; n; Γ xs : list_type
TY Σ; n; Γ cons_expr x xs : list_type.
Proof.
intros. simpl. solve_typing.
Qed.
Lemma list_case_typed Σ n Γ :
type_wf n A
TY Σ; n; Γ list_case : (: list_type.[ren (+1)] #0 (A.[ren(+1)] list_type.[ren (+1)] #0) #0).
Proof.
intros. simpl. solve_typing.
Qed.
End lists.
(* The stack interface *)
Definition stack_t A : type :=
: ((Unit #0) (* new *)
× (#0 A.[ren (+1)] Unit) (* push *)
× (#0 Unit + A.[ren (+1)])) (* pop *)
.
(** We assume an abstract implementation of lists (an example implementation is provided above) *)
Definition list_t (A : type) : type :=
: (#0 (* mynil *)
× (A.[ren (+1)] #0 #0) (* mycons *)
× (: #1 #0 (A.[ren (+2)] #1 #0) #0)) (* mylistcase *)
.
Definition mystack : val :=
(* define your stack implementation, assuming "lc" is a list implementation *)
λ: "lc", #0. (* FIXME *)
Definition make_mystack : val :=
Λ, λ: "lc",
unpack "lc" as "lc" in
#0. (* FIXME *)
Lemma make_mystack_typed Σ n Γ :
TY Σ; n; Γ make_mystack : (: list_t #0 stack_t #0).
Proof.
repeat solve_typing_fast.
Admitted.
(** Exercise 2 (LN Exercise 46): Obfuscated code *)
Definition obf_expr : expr :=
let: "x" := new (λ: "x", "x" + "x") in
let: "f" := (λ: "g", let: "f" := !"x" in "x" <- "g";; "f" #11) in
"f" (λ: "x", "f" (λ: <>, "x")) + "f" (λ: "x", "x" + #9).
(* The following contextual lifting lemma will be helpful *)
Lemma rtc_contextual_step_fill K e e' h h' :
rtc contextual_step (e, h) (e', h')
rtc contextual_step (fill K e, h) (fill K e', h').
Proof.
remember (e, h) as a eqn:Heqa. remember (e', h') as b eqn:Heqb.
induction 1 as [ | ? c ? Hstep ? IH] in e', h', e, h, Heqa, Heqb |-*; subst.
- simplify_eq. done.
- destruct c as (e1, h1).
econstructor 2.
+ apply fill_contextual_step. apply Hstep.
+ apply IH; done.
Qed.
(* You may use the [new_fresh] and [init_heap_singleton] lemmas to allocate locations *)
Lemma obf_expr_eval :
h', rtc contextual_step (obf_expr, ) (of_val #0 (* FIXME: what is the result? *), h').
Proof.
eexists. unfold obf_expr.
(* TODO: exercise *)
Admitted.
(** Exercise 4 (LN Exercise 48): Fibonacci *)
Definition fibonacci : val := #0. (* FIXME *)
Lemma fibonacci_typed Σ n Γ :
TY Σ; n; Γ fibonacci : (Int Int).
Proof.
repeat solve_typing_fast.
Admitted.

@ -0,0 +1,858 @@
From iris.prelude Require Import prelude.
From stdpp Require Export binders strings.
From semantics.ts.systemf_mu_state Require Export locations.
From semantics.lib Require Export maps.
Declare Scope expr_scope.
Declare Scope val_scope.
Delimit Scope expr_scope with E.
Delimit Scope val_scope with V.
(** Expressions and vals. *)
Inductive base_lit : Set :=
| LitInt (n : Z) | LitBool (b : bool) | LitUnit | LitLoc (l : loc).
Inductive un_op : Set :=
| NegOp | MinusUnOp.
Inductive bin_op : Set :=
| PlusOp | MinusOp | MultOp (* Arithmetic *)
| LtOp | LeOp | EqOp. (* Comparison *)
Inductive expr :=
| Lit (l : base_lit)
(* Base lambda calculus *)
| Var (x : string)
| Lam (x : binder) (e : expr)
| App (e1 e2 : expr)
(* Base types and their operations *)
| UnOp (op : un_op) (e : expr)
| BinOp (op : bin_op) (e1 e2 : expr)
| If (e0 e1 e2 : expr)
(* Polymorphism *)
| TApp (e : expr)
| TLam (e : expr)
| Pack (e : expr)
| Unpack (x : binder) (e1 e2 : expr)
(* Products *)
| Pair (e1 e2 : expr)
| Fst (e : expr)
| Snd (e : expr)
(* Sums *)
| InjL (e : expr)
| InjR (e : expr)
| Case (e0 : expr) (e1 : expr) (e2 : expr)
(* Isorecursive types *)
| Roll (e : expr)
| Unroll (e : expr)
(* State *)
| Load (e : expr)
| Store (e1 e2 : expr)
| New (e : expr)
.
Bind Scope expr_scope with expr.
Inductive val :=
| LitV (l : base_lit)
| LamV (x : binder) (e : expr)
| TLamV (e : expr)
| PackV (v : val)
| PairV (v1 v2 : val)
| InjLV (v : val)
| InjRV (v : val)
| RollV (v : val)
.
Bind Scope val_scope with val.
Fixpoint of_val (v : val) : expr :=
match v with
| LitV l => Lit l
| LamV x e => Lam x e
| TLamV e => TLam e
| PackV v => Pack (of_val v)
| PairV v1 v2 => Pair (of_val v1) (of_val v2)
| InjLV v => InjL (of_val v)
| InjRV v => InjR (of_val v)
| RollV v => Roll (of_val v)
end.
Fixpoint to_val (e : expr) : option val :=
match e with
| Lit l => Some $ LitV l
| Lam x e => Some (LamV x e)
| TLam e => Some (TLamV e)
| Pack e =>
to_val e = (λ v, Some $ PackV v)
| Pair e1 e2 =>
to_val e1 = (λ v1, to_val e2 = (λ v2, Some $ PairV v1 v2))
| InjL e => to_val e = (λ v, Some $ InjLV v)
| InjR e => to_val e = (λ v, Some $ InjRV v)
| Roll e => to_val e = (λ v, Some $ RollV v)
| _ => None
end.
(** Equality and other typeclass stuff *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof.
by induction v; simplify_option_eq; repeat f_equal; try apply (proof_irrel _).
Qed.
Lemma of_to_val e v : to_val e = Some v of_val v = e.
Proof.
revert v; induction e; intros v ?; simplify_option_eq; auto with f_equal.
Qed.
#[export] Instance of_val_inj : Inj (=) (=) of_val.
Proof. by intros ?? Hv; apply (inj Some); rewrite <-!to_of_val, Hv. Qed.
(** structural computational version *)
Fixpoint is_val (e : expr) : Prop :=
match e with
| Lit l => True
| Lam x e => True
| TLam e => True
| Pack e => is_val e
| Pair e1 e2 => is_val e1 is_val e2
| InjL e => is_val e
| InjR e => is_val e
| Roll e => is_val e
| _ => False
end.
Lemma is_val_spec e : is_val e v, to_val e = Some v.
Proof.
induction e as [ | | ? e IH | e1 IH1 e2 IH2 | e IH | ? e1 IH1 e2 IH2 | e1 IH1 e2 IH2 e3 IH3 | e IH | e IH | e IH | ? e1 IH1 e2 IH2 | e1 IH1 e2 IH2 | e IH | e IH | e IH | e IH | e1 IH1 e2 IH2 e3 IH3 | e IH | e IH | | | ];
simpl; (split; [ | intros (v & Heq)]); simplify_option_eq; try naive_solver.
- rewrite IH. intros (v & ->). eauto.
- rewrite IH1 IH2. intros [(v1 & ->) (v2 & ->)]. eauto.
- rewrite IH. intros (v & ->). eauto.
- rewrite IH. intros (v & ->); eauto.
- rewrite IH. intros (v & ->). eauto.
Qed.
Global Instance base_lit_eq_dec : EqDecision base_lit.
Proof. solve_decision. Defined.
Global Instance un_op_eq_dec : EqDecision un_op.
Proof. solve_decision. Defined.
Global Instance bin_op_eq_dec : EqDecision bin_op.
Proof. solve_decision. Defined.
(** Substitution *)
Fixpoint subst (x : string) (es : expr) (e : expr) : expr :=
match e with
| Lit _ => e
| Var y => if decide (x = y) then es else Var y
| Lam y e =>
Lam y $ if decide (BNamed x = y) then e else subst x es e
| App e1 e2 => App (subst x es e1) (subst x es e2)
| TApp e => TApp (subst x es e)
| TLam e => TLam (subst x es e)
| Pack e => Pack (subst x es e)
| Unpack y e1 e2 => Unpack y (subst x es e1) (if decide (BNamed x = y) then e2 else subst x es e2)
| UnOp op e => UnOp op (subst x es e)
| BinOp op e1 e2 => BinOp op (subst x es e1) (subst x es e2)
| If e0 e1 e2 => If (subst x es e0) (subst x es e1) (subst x es e2)
| Pair e1 e2 => Pair (subst x es e1) (subst x es e2)
| Fst e => Fst (subst x es e)
| Snd e => Snd (subst x es e)
| InjL e => InjL (subst x es e)
| InjR e => InjR (subst x es e)
| Case e0 e1 e2 => Case (subst x es e0) (subst x es e1) (subst x es e2)
| Roll e => Roll (subst x es e)
| Unroll e => Unroll (subst x es e)
| Load e => Load (subst x es e)
| Store e1 e2 => Store (subst x es e1) (subst x es e2)
| New e => New (subst x es e)
end.
Definition subst' (mx : binder) (es : expr) : expr expr :=
match mx with BNamed x => subst x es | BAnon => id end.
(** The stepping relation *)
Definition un_op_eval (op : un_op) (v : val) : option val :=
match op, v with
| NegOp, LitV (LitBool b) => Some $ LitV $ LitBool (negb b)
| MinusUnOp, LitV (LitInt n) => Some $ LitV $ LitInt (- n)
| _, _ => None
end.
Definition bin_op_eval_int (op : bin_op) (n1 n2 : Z) : option base_lit :=
match op with
| PlusOp => Some $ LitInt (n1 + n2)
| MinusOp => Some $ LitInt (n1 - n2)
| MultOp => Some $ LitInt (n1 * n2)
| LtOp => Some $ LitBool (bool_decide (n1 < n2))
| LeOp => Some $ LitBool (bool_decide (n1 n2))
| EqOp => Some $ LitBool (bool_decide (n1 = n2))
end%Z.
Definition bin_op_eval (op : bin_op) (v1 v2 : val) : option val :=
match v1, v2 with
| LitV (LitInt n1), LitV (LitInt n2) => LitV <$> bin_op_eval_int op n1 n2
| _, _ => None
end.
Definition heap := gmap loc val.
Fixpoint heap_array (l : loc) (vs : list val) : heap :=
match vs with
| [] =>
| v :: vs' => {[l := v]} heap_array (l + 1) vs'
end.
Lemma heap_array_singleton l v : heap_array l [v] = {[l := v]}.
Proof. by rewrite /heap_array right_id. Qed.
Lemma heap_array_lookup l vs w k :
heap_array l vs !! k = Some w
j, (0 j)%Z k = l + j vs !! (Z.to_nat j) = Some w.
Proof.
revert k l; induction vs as [|v' vs IH]=> l' l /=.
{ rewrite lookup_empty. naive_solver lia. }
rewrite -insert_union_singleton_l lookup_insert_Some IH. split.
- intros [[-> ?] | (Hl & j & ? & -> & ?)].
{ eexists 0. rewrite loc_add_0. naive_solver lia. }
eexists (1 + j)%Z. rewrite loc_add_assoc !Z.add_1_l Z2Nat.inj_succ; eauto with lia.
- intros (j & ? & -> & Hil). destruct (decide (j = 0)); simplify_eq/=.
{ rewrite loc_add_0. eauto. }
right. split.
{ rewrite -{1}(loc_add_0 l). intros ?%(inj (loc_add _)); lia. }
assert (Z.to_nat j = S (Z.to_nat (j - 1))) as Hj.
{ rewrite -Z2Nat.inj_succ; last lia. f_equal; lia. }
rewrite Hj /= in Hil.
eexists (j - 1)%Z. rewrite loc_add_assoc Z.add_sub_assoc Z.add_simpl_l.
auto with lia.
Qed.
Lemma heap_array_map_disjoint (h : heap) (l : loc) (vs : list val) :
( i, (0 i)%Z (i < length vs)%Z h !! (l + i) = None)
(heap_array l vs) ## h.
Proof.
intros Hdisj. apply map_disjoint_spec=> l' v1 v2.
intros (j&?&->&Hj%lookup_lt_Some%inj_lt)%heap_array_lookup.
move: Hj. rewrite Z2Nat.id // => ?. by rewrite Hdisj.
Qed.
Definition init_heap (l : loc) (n : Z) (v : val) (σ : heap) : heap :=
heap_array l (replicate (Z.to_nat n) v) σ.
Lemma init_heap_singleton l v σ :
init_heap l 1 v σ = <[l:=v]> σ.
Proof.
rewrite /init_heap /=.
rewrite right_id insert_union_singleton_l. done.
Qed.
Inductive base_step : expr * heap expr * heap Prop :=
| BetaS x e1 e2 e' σ :
is_val e2
e' = subst' x e2 e1
base_step (App (Lam x e1) e2, σ) (e', σ)
| TBetaS e1 σ :
base_step (TApp (TLam e1), σ) (e1, σ)
| UnpackS e1 e2 e' x σ :
is_val e1
e' = subst' x e1 e2
base_step (Unpack x (Pack e1) e2, σ) (e', σ)
| UnOpS op e v v' σ :
to_val e = Some v
un_op_eval op v = Some v'
base_step (UnOp op e, σ) (of_val v', σ)
| BinOpS op e1 v1 e2 v2 v' σ :
to_val e1 = Some v1
to_val e2 = Some v2
bin_op_eval op v1 v2 = Some v'
base_step (BinOp op e1 e2, σ) (of_val v', σ)
| IfTrueS e1 e2 σ :
base_step (If (Lit $ LitBool true) e1 e2, σ) (e1, σ)
| IfFalseS e1 e2 σ :
base_step (If (Lit $ LitBool false) e1 e2, σ) (e2, σ)
| FstS e1 e2 σ :
is_val e1
is_val e2
base_step (Fst (Pair e1 e2), σ) (e1, σ)
| SndS e1 e2 σ :
is_val e1
is_val e2
base_step (Snd (Pair e1 e2), σ) (e2, σ)
| CaseLS e e1 e2 σ :
is_val e
base_step (Case (InjL e) e1 e2, σ) (App e1 e, σ)
| CaseRS e e1 e2 σ :
is_val e
base_step (Case (InjR e) e1 e2, σ) (App e2 e, σ)
| UnrollS e σ :
is_val e
base_step (Unroll (Roll e), σ) (e, σ)
| NewS e v σ l :
σ !! l = None
to_val e = Some v
base_step (New e, σ) (Lit $ LitLoc l, init_heap l 1 v σ)
| LoadS l v σ :
σ !! l = Some v
base_step (Load (Lit $ LitLoc l), σ) (of_val v, σ)
| StoreS l v w e2 σ :
σ !! l = Some v
to_val e2 = Some w
base_step (Store (Lit $ LitLoc l) e2, σ)
(Lit LitUnit, <[l:=w]> σ)
.
(* Misc *)
Lemma is_val_of_val v : is_val (of_val v).
Proof. apply is_val_spec. rewrite to_of_val. eauto. Qed.
(** If [e1] makes a base step to a value under some state [σ1] then any base
step from [e1] under any other state [σ1'] must necessarily be to a value. *)
Lemma base_step_to_val e1 e2 e2' σ1 σ2 σ2' :
base_step (e1, σ1) (e2, σ2)
base_step (e1, σ1) (e2', σ2') is_Some (to_val e2) is_Some (to_val e2').
Proof. inversion 1; inversion 1; naive_solver. Qed.
Lemma new_fresh v σ :
let l := fresh_locs (dom σ) in
base_step (New (of_val v), σ) (Lit $ LitLoc l, init_heap l 1 v σ).
Proof.
intros.
apply NewS.
- apply (not_elem_of_dom).
rewrite -(loc_add_0 l).
by apply fresh_locs_fresh.
- rewrite to_of_val. eauto.
Qed.
(** We define evaluation contexts *)
Inductive ectx_item :=
| AppLCtx (v2 : val)
| AppRCtx (e1 : expr)
| TAppCtx
| PackCtx
| UnpackCtx (x : binder) (e2 : expr)
| UnOpCtx (op : un_op)
| BinOpLCtx (op : bin_op) (v2 : val)
| BinOpRCtx (op : bin_op) (e1 : expr)
| IfCtx (e1 e2 : expr)
| PairLCtx (v2 : val)
| PairRCtx (e1 : expr)
| FstCtx
| SndCtx
| InjLCtx
| InjRCtx
| CaseCtx (e1 : expr) (e2 : expr)
| UnrollCtx
| RollCtx
| LoadCtx
| StoreRCtx (e1 : expr)
| StoreLCtx (v2 : val)
| NewCtx
.
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
match Ki with
| AppLCtx v2 => App e (of_val v2)
| AppRCtx e1 => App e1 e
| TAppCtx => TApp e
| PackCtx => Pack e
| UnpackCtx x e2 => Unpack x e e2
| UnOpCtx op => UnOp op e
| BinOpLCtx op v2 => BinOp op e (of_val v2)
| BinOpRCtx op e1 => BinOp op e1 e
| IfCtx e1 e2 => If e e1 e2
| PairLCtx v2 => Pair e (of_val v2)
| PairRCtx e1 => Pair e1 e
| FstCtx => Fst e
| SndCtx => Snd e
| InjLCtx => InjL e
| InjRCtx => InjR e
| CaseCtx e1 e2 => Case e e1 e2
| UnrollCtx => Unroll e
| RollCtx => Roll e
| LoadCtx => Load e
| StoreRCtx e1 => Store e1 e
| StoreLCtx v2 => Store e (of_val v2)
| NewCtx => New e
end.
(** Basic properties about the language *)
Global Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
Proof. induction Ki; intros ???; simplify_eq/=; auto with f_equal. Qed.
Lemma fill_item_val Ki e :
is_Some (to_val (fill_item Ki e)) is_Some (to_val e).
Proof. intros [v ?]. induction Ki; simplify_option_eq; eauto. Qed.
Lemma fill_item_no_val Ki e :
to_val e = None to_val (fill_item Ki e) = None.
Proof.
intros Hn. destruct (to_val (fill_item _ _ )) eqn:Heq; last done.
edestruct (fill_item_val Ki e) as (? & ?); last simplify_eq.
eauto.
Qed.
Lemma val_base_stuck e1 e2 σ1 σ2 : base_step (e1, σ1) (e2, σ2) to_val e1 = None.
Proof. inversion 1; naive_solver. Qed.
Lemma of_val_lit v l :
of_val v = (Lit l) v = LitV l.
Proof. destruct v; simpl; inversion 1; done. Qed.
Lemma of_val_pair_inv (v v1 v2 : val) :
of_val v = Pair (of_val v1) (of_val v2) v = PairV v1 v2.
Proof.
destruct v; simpl; inversion 1.
apply of_val_inj in H1. apply of_val_inj in H2. subst; done.
Qed.
Lemma of_val_injl_inv (v v' : val) :
of_val v = InjL (of_val v') v = InjLV v'.
Proof.
destruct v; simpl; inversion 1.
apply of_val_inj in H1. subst; done.
Qed.
Lemma of_val_injr_inv (v v' : val) :
of_val v = InjR (of_val v') v = InjRV v'.
Proof.
destruct v; simpl; inversion 1.
apply of_val_inj in H1. subst; done.
Qed.
Ltac simplify_val :=
repeat match goal with
| H: to_val (of_val ?v) = ?o |- _ => rewrite to_of_val in H
| H: is_val ?e |- _ => destruct (proj1 (is_val_spec e) H) as (? & ?); clear H
| H: to_val ?e = ?v |- _ => is_var e; specialize (of_to_val _ _ H); intros <-; clear H
| H: of_val ?v = Lit ?l |- _ => is_var v; specialize (of_val_lit _ _ H); intros ->; clear H
| |- context[to_val (of_val ?e)] => rewrite to_of_val
end.
Lemma base_ectxi_step_val Ki e e2 σ1 σ2 :
base_step (fill_item Ki e, σ1) (e2, σ2) is_Some (to_val e).
Proof.
revert e2. induction Ki; inversion_clear 1; simplify_option_eq; simplify_val; eauto.
Qed.
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
to_val e1 = None to_val e2 = None
fill_item Ki1 e1 = fill_item Ki2 e2 Ki1 = Ki2.
Proof.
revert Ki1. induction Ki2; intros Ki1; induction Ki1; try naive_solver eauto with f_equal.
all: intros ?? Heq; injection Heq; intros ??; simplify_eq; simplify_val; naive_solver.
Qed.
Section contexts.
Notation ectx := (list ectx_item).
Definition empty_ectx : ectx := [].
Definition comp_ectx : ectx ectx ectx := flip (++).
Definition fill (K : ectx) (e : expr) : expr := foldl (flip fill_item) e K.
Lemma fill_app (K1 K2 : ectx) e : fill (K1 ++ K2) e = fill K2 (fill K1 e).
Proof. apply foldl_app. Qed.
Lemma fill_empty e : fill empty_ectx e = e.
Proof. done. Qed.
Lemma fill_comp K1 K2 e : fill K1 (fill K2 e) = fill (comp_ectx K1 K2) e.
Proof. unfold fill, comp_ectx; simpl. by rewrite foldl_app. Qed.
Global Instance fill_inj K : Inj (=) (=) (fill K).
Proof. induction K as [|Ki K IH]; unfold Inj; naive_solver. Qed.
Lemma fill_val K e : is_Some (to_val (fill K e)) is_Some (to_val e).
Proof.
induction K as [|Ki K IH] in e |-*; [ done |]. by intros ?%IH%fill_item_val.
Qed.
Lemma fill_not_val K e : to_val e = None to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some. eauto using fill_val. Qed.
End contexts.
(** Contextual steps *)
Inductive contextual_step : expr * heap expr * heap Prop :=
Ectx_step K e1 e2 σ1 σ2 e1' e2' :
e1 = fill K e1' e2 = fill K e2'
base_step (e1', σ1) (e2', σ2) contextual_step (e1, σ1) (e2, σ2).
Lemma base_contextual_step e1 e2 σ1 σ2 :
base_step (e1, σ1) (e2, σ2) contextual_step (e1, σ1) (e2, σ2).
Proof. apply Ectx_step with empty_ectx; by rewrite ?fill_empty. Qed.
Lemma fill_contextual_step K e1 e2 σ1 σ2 :
contextual_step (e1, σ1) (e2, σ2) contextual_step (fill K e1, σ1) (fill K e2, σ2).
Proof.
inversion 1; subst.
rewrite !fill_comp. by econstructor.
Qed.
(** *** closedness *)
Fixpoint is_closed (X : list string) (e : expr) : bool :=
match e with
| Var x => bool_decide (x X)
| Lam x e => is_closed (x :b: X) e
| Unpack x e1 e2 => is_closed X e1 && is_closed (x :b: X) e2
| Lit _ => true
| UnOp _ e | Fst e | Snd e | InjL e | InjR e | TApp e | TLam e | Pack e | Roll e | Unroll e | Load e | New e=> is_closed X e
| App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 => is_closed X e1 && is_closed X e2
| If e0 e1 e2 | Case e0 e1 e2 =>
is_closed X e0 && is_closed X e1 && is_closed X e2
end.
(** [closed] states closedness as a Coq proposition, through the [Is_true] transformer. *)
Definition closed (X : list string) (e : expr) : Prop := Is_true (is_closed X e).
#[export] Instance closed_proof_irrel X e : ProofIrrel (closed X e).
Proof. unfold closed. apply _. Qed.
#[export] Instance closed_dec X e : Decision (closed X e).
Proof. unfold closed. apply _. Defined.
(** closed expressions *)
Lemma is_closed_weaken X Y e : is_closed X e X Y is_closed Y e.
Proof. revert X Y; induction e; naive_solver (eauto; set_solver). Qed.
Lemma is_closed_weaken_nil X e : is_closed [] e is_closed X e.
Proof. intros. by apply is_closed_weaken with [], list_subseteq_nil. Qed.
Lemma is_closed_subst X e x es :
is_closed [] es is_closed (x :: X) e is_closed X (subst x es e).
Proof.
intros ?.
induction e in X |-*; simpl; intros ?; destruct_and?; split_and?; simplify_option_eq;
try match goal with
| H : ¬(_ _) |- _ => apply not_and_l in H as [?%dec_stable|?%dec_stable]
end; eauto using is_closed_weaken with set_solver.
Qed.
Lemma is_closed_do_subst' X e x es :
is_closed [] es is_closed (x :b: X) e is_closed X (subst' x es e).
Proof. destruct x; eauto using is_closed_subst. Qed.
Lemma closed_is_closed X e :
is_closed X e = true closed X e.
Proof.
unfold closed. split.
- apply Is_true_eq_left.
- apply Is_true_eq_true.
Qed.
(** Substitution lemmas *)
Lemma subst_is_closed X e x es : is_closed X e x X subst x es e = e.
Proof.
induction e in X |-*; simpl; rewrite ?bool_decide_spec ?andb_True; intros ??;
repeat case_decide; simplify_eq; simpl; f_equal; intuition eauto with set_solver.
Qed.
Lemma subst_is_closed_nil e x es : is_closed [] e subst x es e = e.
Proof. intros. apply subst_is_closed with []; set_solver. Qed.
Lemma subst'_is_closed_nil e x es : is_closed [] e subst' x es e = e.
Proof. intros. destruct x as [ | x]. { done. } by apply subst_is_closed_nil. Qed.
(** ** More on the contextual semantics *)
Definition base_reducible (e : expr) σ :=
e' σ', base_step (e, σ) (e', σ').
Definition base_irreducible (e : expr) σ :=
e' σ', ¬base_step (e, σ) (e', σ').
Definition base_stuck (e : expr) σ :=
to_val e = None base_irreducible e σ.
(** Given a base redex [e1_redex] somewhere in a term, and another
decomposition of the same term into [fill K' e1'] such that [e1'] is not
a value, then the base redex context is [e1']'s context [K'] filled with
another context [K'']. In particular, this implies [e1 = fill K''
e1_redex] by [fill_inj], i.e., [e1]' contains the base redex.)
*)
Lemma step_by_val K' K_redex e1' e1_redex e2 σ1 σ2 :
fill K' e1' = fill K_redex e1_redex
to_val e1' = None
base_step (e1_redex, σ1) (e2, σ2)
K'', K_redex = comp_ectx K' K''.
Proof.
rename K' into K. rename K_redex into K'.
rename e1' into e1. rename e1_redex into e1'.
intros Hfill Hred Hstep; revert K' Hfill.
induction K as [|Ki K IH] using rev_ind; simpl; intros K' Hfill; eauto using app_nil_r.
destruct K' as [|Ki' K' _] using @rev_ind; simplify_eq/=.
{ rewrite fill_app in Hstep. apply base_ectxi_step_val in Hstep.
apply fill_val in Hstep. by apply not_eq_None_Some in Hstep. }
rewrite !fill_app in Hfill; simpl in Hfill.
assert (Ki = Ki') as ->.
{ eapply fill_item_no_val_inj, Hfill.
- by apply fill_not_val.
- apply fill_not_val. eauto using val_base_stuck.
}
simplify_eq. destruct (IH K') as [K'' ->]; auto.
exists K''. unfold comp_ectx; simpl. rewrite assoc; done.
Qed.
(** If [fill K e] takes a base step, then either [e] is a value or [K] is
the empty evaluation context. In other words, if [e] is not a value
wrapping it in a context does not add new base redex positions. *)
Lemma base_ectx_step_val K e e2 σ1 σ2 :
base_step (fill K e, σ1) (e2, σ2) is_Some (to_val e) K = empty_ectx.
Proof.
destruct K as [|Ki K _] using rev_ind; simpl; [by auto|].
rewrite fill_app; simpl.
intros ?%base_ectxi_step_val; eauto using fill_val.
Qed.
(** If a [contextual_step] preserving a surrounding context [K] happens,
the reduction happens entirely below the context. *)
Lemma contextual_step_ectx_inv K e e' σ1 σ2 :
to_val e = None
contextual_step (fill K e, σ1) (fill K e', σ2)
contextual_step (e, σ1) (e', σ2).
Proof.
intros ? Hcontextual.
inversion Hcontextual as [??????? Heq1 Heq2 ?]; subst.
eapply step_by_val in H as (K'' & Heq); [ | done | done].
subst K0.
rewrite <-fill_comp in Heq1. rewrite <-fill_comp in Heq2.
apply fill_inj in Heq1. apply fill_inj in Heq2. subst.
econstructor; done.
Qed.
Lemma contextual_ectx_step_case K e e' σ1 σ2 :
contextual_step (fill K e, σ1) (e', σ2)
( e'', e' = fill K e'' contextual_step (e, σ1) (e'', σ2)) is_val e.
Proof.
destruct (to_val e) as [ v | ] eqn:Hv.
{ intros _. right. apply is_val_spec. eauto. }
intros Hcontextual. left.
inversion Hcontextual as [K' ? ? ? ? e1' e2' Heq1 Heq2 Hstep]; subst.
eapply step_by_val in Heq1 as (K'' & ->); [ | done | done].
rewrite <-fill_comp.
eexists _. split; [done | ].
rewrite <-fill_comp in Hcontextual.
apply contextual_step_ectx_inv in Hcontextual; done.
Qed.
Lemma base_reducible_contextual_step_ectx K e1 e2 σ1 σ2 :
base_reducible e1 σ1
contextual_step (fill K e1, σ1) (e2, σ2)
e2', e2 = fill K e2' base_step (e1, σ1) (e2', σ2).
Proof.
intros (e2''&σ2'' & HhstepK) Hctx.
inversion Hctx as [K' ???? e1' e2' HKe1 -> Hstep].
edestruct (step_by_val K) as [K'' ?];
eauto using val_base_stuck; simplify_eq/=.
rewrite <-fill_comp in HKe1; simplify_eq.
exists (fill K'' e2'). rewrite fill_comp; split; [done | ].
apply base_ectx_step_val in HhstepK as [[v ?]|?]; simplify_eq.
{ apply val_base_stuck in Hstep; simplify_eq. }
by rewrite !fill_empty.
Qed.
Lemma base_reducible_contextual_step e1 e2 σ1 σ2 :
base_reducible e1 σ1
contextual_step (e1, σ1) (e2, σ2)
base_step (e1, σ1) (e2, σ2).
Proof.
intros.
edestruct (base_reducible_contextual_step_ectx empty_ectx) as (?&?&?);
rewrite ?fill_empty; eauto.
by simplify_eq; rewrite fill_empty.
Qed.
(** *** Reducibility *)
Definition reducible (e : expr) σ :=
e' σ', contextual_step (e, σ) (e', σ').
Definition irreducible (e : expr) σ :=
e' σ', ¬contextual_step (e, σ) (e', σ').
Definition stuck (e : expr) σ :=
to_val e = None irreducible e σ.
Definition not_stuck (e : expr) σ :=
is_Some (to_val e) reducible e σ.
Lemma base_step_not_stuck e e' σ σ' : base_step (e, σ) (e', σ') not_stuck e σ.
Proof. unfold not_stuck, reducible; simpl. eauto 10 using base_contextual_step. Qed.
Lemma val_stuck e e' σ σ' : contextual_step (e, σ) (e', σ') to_val e = None.
Proof.
inversion 1 as [??????? -> -> ?%val_base_stuck].
apply eq_None_not_Some. by intros ?%fill_val%eq_None_not_Some.
Qed.
Lemma not_reducible e σ : ¬reducible e σ irreducible e σ.
Proof. unfold reducible, irreducible. naive_solver. Qed.
Lemma reducible_not_val e σ : reducible e σ to_val e = None.
Proof. intros (?&?&?). eauto using val_stuck. Qed.
Lemma val_irreducible e σ : is_Some (to_val e) irreducible e σ.
Proof. intros [??] ?? ?%val_stuck. by destruct (to_val e). Qed.
Lemma irreducible_fill K e σ :
irreducible (fill K e) σ irreducible e σ.
Proof.
intros Hirred e' σ' Hstep.
eapply Hirred. by apply fill_contextual_step.
Qed.
Lemma base_reducible_reducible e σ :
base_reducible e σ reducible e σ.
Proof. intros (e' & σ' & Hhead). exists e', σ'. by apply base_contextual_step. Qed.
(* we derive a few lemmas about contextual steps *)
Lemma contextual_step_app_l e1 e1' e2 σ1 σ2 :
is_val e2
contextual_step (e1, σ1) (e1', σ2)
contextual_step (App e1 e2, σ1) (App e1' e2, σ2).
Proof.
intros [v <-%of_to_val]%is_val_spec Hcontextual.
by eapply (fill_contextual_step [AppLCtx _]).
Qed.
Lemma contextual_step_app_r e1 e2 e2' σ1 σ2 :
contextual_step (e2, σ1) (e2', σ2)
contextual_step (App e1 e2, σ1) (App e1 e2', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [AppRCtx e1]).
Qed.
Lemma contextual_step_tapp e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (TApp e, σ1) (TApp e', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [TAppCtx]).
Qed.
Lemma contextual_step_pack e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (Pack e, σ1) (Pack e', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [PackCtx]).
Qed.
Lemma contextual_step_unpack x e e' e2 σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (Unpack x e e2, σ1) (Unpack x e' e2, σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [UnpackCtx x e2]).
Qed.
Lemma contextual_step_unop op e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (UnOp op e, σ1) (UnOp op e', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [UnOpCtx op]).
Qed.
Lemma contextual_step_binop_l op e1 e1' e2 σ1 σ2 :
is_val e2
contextual_step (e1, σ1) (e1', σ2)
contextual_step (BinOp op e1 e2, σ1) (BinOp op e1' e2, σ2).
Proof.
intros [v <-%of_to_val]%is_val_spec Hcontextual.
by eapply (fill_contextual_step [BinOpLCtx op v]).
Qed.
Lemma contextual_step_binop_r op e1 e2 e2' σ1 σ2 :
contextual_step (e2, σ1) (e2', σ2)
contextual_step (BinOp op e1 e2, σ1) (BinOp op e1 e2', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [BinOpRCtx op e1]).
Qed.
Lemma contextual_step_if e e' e1 e2 σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (If e e1 e2, σ1) (If e' e1 e2, σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [IfCtx e1 e2]).
Qed.
Lemma contextual_step_pair_l e1 e1' e2 σ1 σ2 :
is_val e2
contextual_step (e1, σ1) (e1', σ2)
contextual_step (Pair e1 e2, σ1) (Pair e1' e2, σ2).
Proof.
intros [v <-%of_to_val]%is_val_spec Hcontextual.
by eapply (fill_contextual_step [PairLCtx v]).
Qed.
Lemma contextual_step_pair_r e1 e2 e2' σ1 σ2 :
contextual_step (e2, σ1) (e2', σ2)
contextual_step (Pair e1 e2, σ1) (Pair e1 e2', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [PairRCtx e1]).
Qed.
Lemma contextual_step_fst e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (Fst e, σ1) (Fst e', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [FstCtx]).
Qed.
Lemma contextual_step_snd e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (Snd e, σ1) (Snd e', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [SndCtx]).
Qed.
Lemma contextual_step_injl e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (InjL e, σ1) (InjL e', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [InjLCtx]).
Qed.
Lemma contextual_step_injr e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (InjR e, σ1) (InjR e', σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [InjRCtx]).
Qed.
Lemma contextual_step_case e e' e1 e2 σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (Case e e1 e2, σ1) (Case e' e1 e2, σ2).
Proof.
intros Hcontextual.
by eapply (fill_contextual_step [CaseCtx e1 e2]).
Qed.
Lemma contextual_step_roll e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (Roll e, σ1) (Roll e', σ2).
Proof. by apply (fill_contextual_step [RollCtx]). Qed.
Lemma contextual_step_unroll e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (Unroll e, σ1) (Unroll e', σ2).
Proof. by apply (fill_contextual_step [UnrollCtx]). Qed.
Lemma contextual_step_new e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (New e, σ1) (New e', σ2).
Proof. by apply (fill_contextual_step [NewCtx]). Qed.
Lemma contextual_step_load e e' σ1 σ2 :
contextual_step (e, σ1) (e', σ2)
contextual_step (Load e, σ1) (Load e', σ2).
Proof. by apply (fill_contextual_step [LoadCtx]). Qed.
Lemma contextual_step_store_r e1 e2 e2' σ1 σ2 :
contextual_step (e2, σ1) (e2', σ2)
contextual_step (Store e1 e2, σ1) (Store e1 e2', σ2).
Proof. by apply (fill_contextual_step [StoreRCtx _]). Qed.
Lemma contextual_step_store_l e1 e1' e2 σ1 σ2 :
is_val e2
contextual_step (e1, σ1) (e1', σ2)
contextual_step (Store e1 e2, σ1) (Store e1' e2, σ2).
Proof.
intros [v <-%of_to_val]%is_val_spec Hcontextual.
by eapply (fill_contextual_step [StoreLCtx _]).
Qed.
#[export]
Hint Resolve
contextual_step_app_l contextual_step_app_r contextual_step_binop_l contextual_step_binop_r
contextual_step_case contextual_step_fst contextual_step_if contextual_step_injl contextual_step_injr
contextual_step_pack contextual_step_pair_l contextual_step_pair_r contextual_step_snd contextual_step_tapp
contextual_step_tapp contextual_step_unop contextual_step_unpack contextual_step_roll contextual_step_unroll
contextual_step_new contextual_step_load contextual_step_store_r contextual_step_store_l : core.

@ -0,0 +1,46 @@
From stdpp Require Import countable numbers gmap.
Record loc := Loc { loc_car : Z }.
Add Printing Constructor loc.
Global Instance loc_eq_decision : EqDecision loc.
Proof. solve_decision. Defined.
Global Instance loc_inhabited : Inhabited loc := populate {|loc_car := 0 |}.
Global Instance loc_countable : Countable loc.
Proof. by apply (inj_countable' loc_car Loc); intros []. Defined.
Global Program Instance loc_infinite : Infinite loc :=
inj_infinite (λ p, {| loc_car := p |}) (λ l, Some (loc_car l)) _.
Next Obligation. done. Qed.
Definition loc_add (l : loc) (off : Z) : loc :=
{| loc_car := loc_car l + off|}.
Notation "l +ₗ off" :=
(loc_add l off) (at level 50, left associativity) : stdpp_scope.
Lemma loc_add_assoc l i j : l + i + j = l + (i + j).
Proof. destruct l; unfold loc_add; simpl; f_equal; lia. Qed.
Lemma loc_add_0 l : l + 0 = l.
Proof. destruct l; unfold loc_add; simpl; f_equal; lia. Qed.
Global Instance loc_add_inj l : Inj eq eq (loc_add l).
Proof. destruct l; unfold Inj, loc_add; simpl; intros; simplify_eq; lia. Qed.
Definition fresh_locs (ls : gset loc) : loc :=
{| loc_car := set_fold (λ k r, (1 + loc_car k) `max` r)%Z 1%Z ls |}.
Lemma fresh_locs_fresh ls i :
(0 i)%Z fresh_locs ls + i ls.
Proof.
intros Hi. cut ( l, l ls loc_car l < loc_car (fresh_locs ls) + i)%Z.
{ intros help Hf%help. simpl in *. lia. }
apply (set_fold_ind_L (λ r ls, l, l ls (loc_car l < r + i)%Z));
set_solver by eauto with lia.
Qed.
Global Opaque fresh_locs.

File diff suppressed because it is too large Load Diff

@ -0,0 +1,113 @@
From semantics.ts.systemf_mu_state Require Export lang.
Set Default Proof Using "Type".
(** Coercions to make programs easier to type. *)
Coercion of_val : val >-> expr.
Coercion LitInt : Z >-> base_lit.
Coercion LitBool : bool >-> base_lit.
Coercion LitLoc : loc >-> base_lit.
Coercion App : expr >-> Funclass.
Coercion Var : string >-> expr.
(** Define some derived forms. *)
Notation Let x e1 e2 := (App (Lam x e2) e1) (only parsing).
Notation Seq e1 e2 := (Let BAnon e1 e2) (only parsing).
Notation Match e0 x1 e1 x2 e2 := (Case e0 (Lam x1 e1) (Lam x2 e2)) (only parsing).
(* No scope for the values, does not conflict and scope is often not inferred
properly. *)
Notation "# l" := (LitV l%Z%V%stdpp) (at level 8, format "# l").
Notation "# l" := (Lit l%Z%E%stdpp) (at level 8, format "# l") : expr_scope.
(** Syntax inspired by Coq/Ocaml. Constructions with higher precedence come
first. *)
Notation "( e1 , e2 , .. , en )" := (Pair .. (Pair e1 e2) .. en) : expr_scope.
Notation "( e1 , e2 , .. , en )" := (PairV .. (PairV e1 e2) .. en) : val_scope.
Notation "'match:' e0 'with' 'InjL' x1 => e1 | 'InjR' x2 => e2 'end'" :=
(Match e0 x1%binder e1 x2%binder e2)
(e0, x1, e1, x2, e2 at level 200,
format "'[hv' 'match:' e0 'with' '/ ' '[' 'InjL' x1 => '/ ' e1 ']' '/' '[' | 'InjR' x2 => '/ ' e2 ']' '/' 'end' ']'") : expr_scope.
Notation "'match:' e0 'with' 'InjR' x1 => e1 | 'InjL' x2 => e2 'end'" :=
(Match e0 x2%binder e2 x1%binder e1)
(e0, x1, e1, x2, e2 at level 200, only parsing) : expr_scope.
Notation "()" := LitUnit : val_scope.
Notation "e1 + e2" := (BinOp PlusOp e1%E e2%E) : expr_scope.
Notation "e1 - e2" := (BinOp MinusOp e1%E e2%E) : expr_scope.
Notation "e1 * e2" := (BinOp MultOp e1%E e2%E) : expr_scope.
Notation "e1 ≤ e2" := (BinOp LeOp e1%E e2%E) : expr_scope.
Notation "e1 = e2" := (BinOp EqOp e1%E e2%E) : expr_scope.
Notation "e1 < e2" := (BinOp LtOp e1%E e2%E) : expr_scope.
(*Notation "~ e" := (UnOp NegOp e%E) (at level 75, right associativity) : expr_scope.*)
Notation "'if:' e1 'then' e2 'else' e3" := (If e1%E e2%E e3%E)
(at level 200, e1, e2, e3 at level 200) : expr_scope.
Notation "λ: x , e" := (Lam x%binder e%E)
(at level 200, x at level 1, e at level 200,
format "'[' 'λ:' x , '/ ' e ']'") : expr_scope.
Notation "λ: x y .. z , e" := (Lam x%binder (Lam y%binder .. (Lam z%binder e%E) ..))
(at level 200, x, y, z at level 1, e at level 200,
format "'[' 'λ:' x y .. z , '/ ' e ']'") : expr_scope.
Notation "λ: x , e" := (LamV x%binder e%E)
(at level 200, x at level 1, e at level 200,
format "'[' 'λ:' x , '/ ' e ']'") : val_scope.
Notation "λ: x y .. z , e" := (LamV x%binder (Lam y%binder .. (Lam z%binder e%E) .. ))
(at level 200, x, y, z at level 1, e at level 200,
format "'[' 'λ:' x y .. z , '/ ' e ']'") : val_scope.
Notation "'let:' x := e1 'in' e2" := (Lam x%binder e2%E e1%E)
(at level 200, x at level 1, e1, e2 at level 200,
format "'[' 'let:' x := '[' e1 ']' 'in' '/' e2 ']'") : expr_scope.
Notation "e1 ;; e2" := (Lam BAnon e2%E e1%E)
(at level 100, e2 at level 200,
format "'[' '[hv' '[' e1 ']' ;; ']' '/' e2 ']'") : expr_scope.
Notation "'Λ' , e" := (TLam e%E)
(at level 200, e at level 200,
format "'[' 'Λ' , '/ ' e ']'") : expr_scope.
Notation "'Λ' , e" := (TLamV e%E)
(at level 200, e at level 200,
format "'[' 'Λ' , '/ ' e ']'") : val_scope.
(* the [e] always needs to be paranthesized, due to the level
(chosen to make this cooperate with the [App] coercion) *)
Notation "e '<>'" := (TApp e%E)
(at level 10) : expr_scope.
(*Check ((Λ, #4) <>)%E.*)
(*Check (((λ: "x", "x") #5) <>)%E.*)
Notation "'pack' e" := (Pack e%E)
(at level 200, e at level 200) : expr_scope.
Notation "'pack' v" := (PackV v%V)
(at level 200, v at level 200) : val_scope.
Notation "'unpack' e1 'as' x 'in' e2" := (Unpack x%binder e1%E e2%E)
(at level 200, e1, e2 at level 200, x at level 1) : expr_scope.
Notation "'roll' e" := (Roll e%E)
(at level 200, e at level 200) : expr_scope.
Notation "'roll' v" := (RollV v%E)
(at level 200, v at level 200) : val_scope.
Notation "'unroll' e" := (Unroll e%E)
(at level 200, e at level 200) : expr_scope.
Notation "! e" := (Load e%E) (at level 9, right associativity) : expr_scope.
Notation "'new' e" := (New e%E) (at level 10) : expr_scope.
Notation "e1 <- e2" := (Store e1%E e2%E) (at level 80) : expr_scope.
Definition assert (e : expr) : expr :=
if: e then #LitUnit else (#0 #0).
Definition Or (e1 e2 : expr) : expr :=
if: e1 then #true else e2.
Definition And (e1 e2 : expr) : expr :=
if: e1 then e2 else #false.
Notation "e1 '||' e2" := (Or e1 e2) : expr_scope.
Notation "e1 '&&' e2" := (And e1 e2) : expr_scope.

@ -0,0 +1,279 @@
From stdpp Require Import prelude.
From iris Require Import prelude.
From semantics.lib Require Import facts.
From semantics.ts.systemf_mu_state Require Import lang.
From semantics.lib Require Import maps.
Fixpoint subst_map (xs : gmap string expr) (e : expr) : expr :=
match e with
| Lit l => Lit l
| Var y => match xs !! y with Some es => es | _ => Var y end
| App e1 e2 => App (subst_map xs e1) (subst_map xs e2)
| Lam x e => Lam x (subst_map (binder_delete x xs) e)
| UnOp op e => UnOp op (subst_map xs e)
| BinOp op e1 e2 => BinOp op (subst_map xs e1) (subst_map xs e2)
| If e0 e1 e2 => If (subst_map xs e0) (subst_map xs e1) (subst_map xs e2)
| TApp e => TApp (subst_map xs e)
| TLam e => TLam (subst_map xs e)
| Pack e => Pack (subst_map xs e)
| Unpack x e1 e2 => Unpack x (subst_map xs e1) (subst_map (binder_delete x xs) e2)
| Pair e1 e2 => Pair (subst_map xs e1) (subst_map xs e2)
| Fst e => Fst (subst_map xs e)
| Snd e => Snd (subst_map xs e)
| InjL e => InjL (subst_map xs e)
| InjR e => InjR (subst_map xs e)
| Case e e1 e2 => Case (subst_map xs e) (subst_map xs e1) (subst_map xs e2)
| Roll e => Roll (subst_map xs e)
| Unroll e => Unroll (subst_map xs e)
| Load e => Load (subst_map xs e)
| Store e1 e2 => Store (subst_map xs e1) (subst_map xs e2)
| New e => New (subst_map xs e)
end.
Lemma subst_map_empty e :
subst_map e = e.
Proof.
induction e; simpl; f_equal; eauto.
all: destruct x; simpl; [done | by rewrite !delete_empty..].
Qed.
Lemma subst_map_is_closed X e xs :
is_closed X e
( x : string, x dom xs x X)
subst_map xs e = e.
Proof.
intros Hclosed Hd.
induction e in xs, X, Hd, Hclosed |-*; simpl in *;try done.
all: repeat match goal with
| H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ]
end.
{ (* Var *)
apply bool_decide_spec in Hclosed.
assert (xs !! x = None) as ->; last done.
destruct (xs !! x) as [s | ] eqn:Helem; last done.
exfalso; eapply Hd; last apply Hclosed.
apply elem_of_dom; eauto.
}
{ (* lambdas *)
erewrite IHe; [done | done |].
intros y. destruct x as [ | x]; first apply Hd.
simpl.
rewrite dom_delete elem_of_difference not_elem_of_singleton.
intros [Hnx%Hd Hneq]. rewrite elem_of_cons. intros [? | ?]; done.
}
8: { (* Unpack *)
erewrite IHe1; [ | done | done].
erewrite IHe2; [ done | done | ].
intros y. destruct x as [ | x]; first apply Hd.
simpl.
rewrite dom_delete elem_of_difference not_elem_of_singleton.
intros [Hnx%Hd Hneq]. rewrite elem_of_cons. intros [? | ?]; done.
}
(* all other cases *)
all: repeat match goal with
| H : _ _, _ _ subst_map _ _ = _ |- _ => erewrite H; clear H
end; done.
Qed.
Lemma subst_map_subst map x (e e' : expr) :
is_closed [] e'
subst_map map (subst x e' e) = subst_map (<[x:=e']>map) e.
Proof.
intros He'.
revert x map; induction e; intros xx map; simpl;
try (f_equal; eauto).
- case_decide.
+ simplify_eq/=. rewrite lookup_insert.
rewrite (subst_map_is_closed []); [done | apply He' | ].
intros ? ?. apply not_elem_of_nil.
+ rewrite lookup_insert_ne; done.
- destruct x; simpl; first done.
+ case_decide.
* simplify_eq/=. by rewrite delete_insert_delete.
* rewrite delete_insert_ne; last by congruence. done.
- destruct x; simpl; first done.
+ case_decide.
* simplify_eq/=. by rewrite delete_insert_delete.
* rewrite delete_insert_ne; last by congruence. done.
Qed.
Definition subst_is_closed (X : list string) (map : gmap string expr) :=
x e, map !! x = Some e closed X e.
Lemma subst_is_closed_subseteq X map1 map2 :
map1 map2 subst_is_closed X map2 subst_is_closed X map1.
Proof.
intros Hsub Hclosed2 x e Hl. eapply Hclosed2, map_subseteq_spec; done.
Qed.
Lemma subst_subst_map x es map e :
subst_is_closed [] map
subst x es (subst_map (delete x map) e) =
subst_map (<[x:=es]>map) e.
Proof.
revert map es x; induction e; intros map v0 xx Hclosed; simpl;
try (f_equal; eauto).
- destruct (decide (xx=x)) as [->|Hne].
+ rewrite lookup_delete // lookup_insert //. simpl.
rewrite decide_True //.
+ rewrite lookup_delete_ne // lookup_insert_ne //.
destruct (_ !! x) as [rr|] eqn:Helem.
* apply Hclosed in Helem.
by apply subst_is_closed_nil.
* simpl. rewrite decide_False //.
- destruct x; simpl; first by auto.
case_decide.
+ simplify_eq. rewrite delete_idemp delete_insert_delete. done.
+ rewrite delete_insert_ne //; last congruence. rewrite delete_commute. apply IHe.
eapply subst_is_closed_subseteq; last done.
apply map_delete_subseteq.
- destruct x; simpl; first by auto.
case_decide.
+ simplify_eq. rewrite delete_idemp delete_insert_delete. done.
+ rewrite delete_insert_ne //; last congruence. rewrite delete_commute. apply IHe2.
eapply subst_is_closed_subseteq; last done.
apply map_delete_subseteq.
Qed.
Lemma subst'_subst_map b (es : expr) map e :
subst_is_closed [] map
subst' b es (subst_map (binder_delete b map) e) =
subst_map (binder_insert b es map) e.
Proof.
destruct b; first done.
apply subst_subst_map.
Qed.
Lemma closed_subst_weaken e map X Y :
subst_is_closed [] map
( x, x X x dom map x Y)
closed X e
closed Y (subst_map map e).
Proof.
induction e in X, Y, map |-*; rewrite /closed; simpl; intros Hmclosed Hsub Hcl; first done.
all: repeat match goal with
| H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ]
end.
{ (* vars *)
destruct (map !! x) as [es | ] eqn:Heq.
+ apply is_closed_weaken_nil. by eapply Hmclosed.
+ apply bool_decide_pack. apply Hsub; first by eapply bool_decide_unpack.
by apply not_elem_of_dom.
}
{ (* lambdas *)
eapply IHe; last done.
+ eapply subst_is_closed_subseteq; last done.
destruct x; first done. apply map_delete_subseteq.
+ intros y. destruct x as [ | x]; first by apply Hsub.
rewrite !elem_of_cons. intros [-> | Hy] Hn; first by left.
destruct (decide (y = x)) as [ -> | Hneq]; first by left.
right. eapply Hsub; first done. set_solver.
}
8: { (* unpack *)
apply andb_True; split; first naive_solver.
eapply IHe2; last done.
+ eapply subst_is_closed_subseteq; last done.
destruct x; first done. apply map_delete_subseteq.
+ intros y. destruct x as [ | x]; first by apply Hsub.
rewrite !elem_of_cons. intros [-> | Hy] Hn; first by left.
destruct (decide (y = x)) as [ -> | Hneq]; first by left.
right. eapply Hsub; first done. set_solver.
}
(* all other cases *)
all: repeat match goal with
| |- Is_true (_ && _) => apply andb_True; split
end.
all: naive_solver.
Qed.
Lemma subst_is_closed_weaken X1 X2 θ :
subst_is_closed X1 θ
X1 X2
subst_is_closed X2 θ.
Proof.
intros Hcl Hincl x e Hlook.
eapply is_closed_weaken; last done.
by eapply Hcl.
Qed.
Lemma subst_is_closed_weaken_nil X θ :
subst_is_closed [] θ
subst_is_closed X θ.
Proof.
intros; eapply subst_is_closed_weaken; first done.
apply list_subseteq_nil.
Qed.
Lemma subst_is_closed_insert X e f θ :
is_closed X e
subst_is_closed X (delete f θ)
subst_is_closed X (<[f := e]> θ).
Proof.
intros Hcl Hcl' x e'.
destruct (decide (x = f)) as [<- | ?].
- rewrite lookup_insert. intros [= <-]. done.
- rewrite lookup_insert_ne; last done.
intros Hlook. eapply Hcl'.
rewrite lookup_delete_ne; done.
Qed.
(* NOTE: this is a simplified version of the tactic in tactics.v which
suffice for this proof *)
Ltac simplify_closed :=
repeat match goal with
| |- closed _ _ => unfold closed; simpl
| |- Is_true (_ && _) => simpl; rewrite !andb_True; split_and!
| H : closed _ _ |- _ => unfold closed in H; simpl in H
| H: Is_true (_ && _) |- _ => simpl in H; apply andb_True in H
| H : _ _ |- _ => destruct H
end.
Lemma is_closed_subst_map X θ e :
subst_is_closed X θ
closed (X ++ elements (dom θ)) e
closed X (subst_map θ e).
Proof.
induction e in X, θ |-*; eauto.
all: try solve [intros; simplify_closed; naive_solver].
- unfold subst_map.
destruct (θ !! x) eqn:Heq.
+ intros Hcl _. eapply Hcl; done.
+ intros _ Hcl.
apply closed_is_closed in Hcl.
apply bool_decide_eq_true in Hcl.
apply elem_of_app in Hcl.
destruct Hcl as [ | H].
* apply closed_is_closed. by apply bool_decide_eq_true.
* apply elem_of_elements in H.
by apply not_elem_of_dom in Heq.
- intros. simplify_closed.
eapply IHe.
+ destruct x as [ | x]; simpl; first done.
intros y e'. rewrite lookup_delete_Some. intros (? & Hlook%H).
eapply is_closed_weaken; first done.
by apply list_subseteq_cons_r.
+ eapply is_closed_weaken; first done.
simpl. destruct x as [ | x]; first done; simpl.
apply list_subseteq_cons_l.
apply stdpp.sets.elem_of_subseteq.
intros y; simpl. rewrite elem_of_cons !elem_of_app.
intros [ | Helem]; first naive_solver.
destruct (decide (x = y)) as [<- | Hneq]; first naive_solver.
right. right. apply elem_of_elements. rewrite dom_delete elem_of_difference elem_of_singleton.
apply elem_of_elements in Helem; done.
- intros. simplify_closed. { naive_solver. }
(* same proof as for lambda *)
eapply IHe2.
+ destruct x as [ | x]; simpl; first done.
intros y e'. rewrite lookup_delete_Some. intros (? & Hlook%H).
eapply is_closed_weaken; first done.
by apply list_subseteq_cons_r.
+ eapply is_closed_weaken; first done.
simpl. destruct x as [ | x]; first done; simpl.
apply list_subseteq_cons_l.
apply stdpp.sets.elem_of_subseteq.
intros y; simpl. rewrite elem_of_cons !elem_of_app.
intros [ | Helem]; first naive_solver.
destruct (decide (x = y)) as [<- | Hneq]; first naive_solver.
right. right. apply elem_of_elements. rewrite dom_delete elem_of_difference elem_of_singleton.
apply elem_of_elements in Helem; done.
Qed.

@ -0,0 +1,91 @@
From stdpp Require Import gmap base relations.
From iris Require Import prelude.
From semantics.lib Require Export facts maps sets.
From semantics.ts.systemf_mu_state Require Export lang notation parallel_subst types.
Ltac map_solver :=
repeat match goal with
| |- ( _) !! _ = Some _ =>
rewrite fmap_insert
| |- <[ ?p := _ ]> _ !! ?p = Some _ =>
apply lookup_insert
| |- <[ _ := _ ]> _ !! _ = Some _ =>
rewrite lookup_insert_ne; [ | congruence]
end.
Ltac solve_typing_step := idtac.
Ltac solve_typing :=
intros;
repeat (asimpl; solve_typing_step).
Ltac solve_typing_fast :=
intros;
repeat (solve_typing_step).
Ltac solve_typing_step ::=
match goal with
| |- TY _; _ ; _ ?e : ?A => first [eassumption | econstructor]
(* heuristic to solve tapp goals where we need to pick the right type for the substitution *)
| |- TY _ ; _ ; _ ?e <> : ?A => eapply typed_tapp'; [solve_typing | | asimpl; reflexivity]
| |- TY _ ; _ ; _ Unroll ?e : ?A => eapply typed_unroll'; [solve_typing | asimpl; reflexivity]
| |- bin_op_typed _ _ _ _ => econstructor
| |- un_op_typed _ _ _ _ => econstructor
| |- type_wf _ ?e => assert_fails (is_evar e); eassumption
| |- type_wf _ ?e => assert_fails (is_evar e); econstructor
| |- type_wf _ (subst _ ?A) => eapply type_wf_subst; [ | intros; simpl]
| |- type_wf _ ?e => assert_fails (is_evar e); eapply type_wf_mono; [eassumption | lia]
(* conditions spawned by the tyvar case of [type_wf] *)
| |- _ < _ => simpl; lia
(* conditions spawned by the variable case *)
| |- _ !! _ = Some _ => map_solver
end.
Tactic Notation "unify_type" uconstr(A) :=
match goal with
| |- TY ?Σ; ?n; ?Γ ?e : ?B => unify A B
end.
Tactic Notation "replace_type" uconstr(A) :=
match goal with
| |- TY ?Σ; ?n; ?Γ ?e : ?B => replace B%ty with A%ty; cycle -1; first try by asimpl
end.
Ltac simplify_list_elem :=
simpl;
repeat match goal with
| |- ?x ?y :: ?l => apply elem_of_cons; first [left; reflexivity | right]
| |- _ [] => apply not_elem_of_nil
| |- _ _ :: _ => apply not_elem_of_cons; split
end; try fast_done.
Ltac simplify_list_subseteq :=
simpl;
repeat match goal with
| |- ?x :: _ ?x :: _ => apply list_subseteq_cons_l
| |- ?x :: _ _ => apply list_subseteq_cons_elem; first solve [simplify_list_elem]
| |- elements _ elements _ => apply elements_subseteq; set_solver
| |- [] _ => apply list_subseteq_nil
| |- ?x :b: _ ?x :b: _ => apply list_subseteq_cons_binder
(* NOTE: this might make the goal unprovable *)
(*| |- elements _ ⊆ _ :: _ => apply list_subseteq_cons_r*)
end;
try fast_done.
(* Try to solve [is_closed] goals using a number of heuristics (that shouldn't make the goal unprovable) *)
Ltac simplify_closed :=
simpl; intros;
repeat match goal with
| |- closed _ _ => unfold closed; simpl
| |- Is_true (is_closed [] _) => first [assumption | done]
| |- Is_true (is_closed _ (lang.subst _ _ _)) => rewrite subst_is_closed_nil; last solve[simplify_closed]
| |- Is_true (is_closed ?X ?v) => assert_fails (is_evar X); eapply is_closed_weaken
| |- Is_true (is_closed _ _) => eassumption
| |- Is_true (_ && true) => rewrite andb_true_r
| |- Is_true (true && _) => rewrite andb_true_l
| |- Is_true (?a && ?a) => rewrite andb_diag
| |- Is_true (_ && _) => simpl; rewrite !andb_True; split_and!
| |- _ ?A => match type of A with | list _ => simplify_list_subseteq end
| |- _ ?A => match type of A with | list _ => simplify_list_elem end
| |- _ _ => congruence
| H : closed _ _ |- _ => unfold closed in H; simpl in H
| H: Is_true (_ && _) |- _ => simpl in H; apply andb_True in H
| H : _ _ |- _ => destruct H
| |- Is_true (bool_decide (_ _)) => apply bool_decide_pack; set_solver
end; try fast_done.

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save