You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
semantics-2023/theories/type_systems/stlc_extended/parallel_subst.v

194 lines
6.5 KiB

From stdpp Require Import prelude.
From iris Require Import prelude.
From semantics.ts.stlc_extended Require Import lang.
From semantics.lib Require Import maps.
Fixpoint subst_map (xs : gmap string expr) (e : expr) : expr :=
match e with
| LitInt n => LitInt n
| Var y => match xs !! y with Some es => es | _ => Var y end
| App e1 e2 => App (subst_map xs e1) (subst_map xs e2)
| Lam x e => Lam x (subst_map (binder_delete x xs) e)
| Plus e1 e2 => Plus (subst_map xs e1) (subst_map xs e2)
| Pair e1 e2 => Pair (subst_map xs e1) (subst_map xs e2)
| Fst e => Fst (subst_map xs e)
| Snd e => Snd (subst_map xs e)
| InjL e => InjL (subst_map xs e)
| InjR e => InjR (subst_map xs e)
| Case e e1 e2 => Case (subst_map xs e) (subst_map xs e1) (subst_map xs e2)
end.
Lemma subst_map_empty e :
subst_map e = e.
Proof.
induction e; simpl; f_equal; eauto.
destruct x; simpl; [done | by rewrite !delete_empty..].
Qed.
Lemma subst_map_closed X e xs :
closed X e
( x : string, x dom xs x X)
subst_map xs e = e.
Proof.
intros Hclosed Hd.
induction e in xs, X, Hd, Hclosed |-*; simpl in *;try done.
{ (* Var *)
apply bool_decide_spec in Hclosed.
assert (xs !! x = None) as ->; last done.
destruct (xs !! x) as [s | ] eqn:Helem; last done.
exfalso; eapply Hd; last apply Hclosed.
apply elem_of_dom; eauto.
}
{ (* lambdas *)
erewrite IHe; [done | done |].
intros y. destruct x as [ | x]; first apply Hd.
simpl.
rewrite dom_delete elem_of_difference not_elem_of_singleton.
intros [Hnx%Hd Hneq]. rewrite elem_of_cons. intros [? | ?]; done.
}
(* all other cases *)
all: unfold closed in *; simpl in *.
all: repeat match goal with
| H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ]
end.
all: repeat match goal with
| H : _ _, _ _ subst_map _ _ = _ |- _ => erewrite H; clear H
end; try done.
Qed.
Lemma subst_map_subst map x (e e': expr) :
closed [] e'
subst_map map (subst x e' e) = subst_map (<[x:=e']>map) e.
Proof.
intros He'; induction e as [y|y e IH | | | | | | | | | ]in map|-*; simpl; try (f_equal; eauto).
- case_decide.
+ simplify_eq/=. rewrite lookup_insert.
rewrite (subst_map_closed []); [done | apply He' | ].
intros ? ?. apply not_elem_of_nil.
+ rewrite lookup_insert_ne; done.
- destruct y; simpl; first done.
+ case_decide.
* simplify_eq/=. by rewrite delete_insert_delete.
* rewrite delete_insert_ne; last by congruence. done.
Qed.
(** We lift the notion of closedness [closed] to substitution maps. *)
Definition subst_closed (X : list string) (map : gmap string expr) :=
x e, map !! x = Some e closed X e.
Lemma subst_closed_subseteq X map1 map2 :
map1 map2 subst_closed X map2 subst_closed X map1.
Proof.
intros Hsub Hclosed2 x e Hl. eapply Hclosed2, map_subseteq_spec; done.
Qed.
Lemma subst_closed_weaken X Y map1 map2 :
Y X map1 map2 subst_closed Y map2 subst_closed X map1.
Proof.
intros Hsub1 Hsub2 Hclosed2 x e Hl.
eapply is_closed_weaken. 1:eapply Hclosed2, map_subseteq_spec; done. done.
Qed.
(** Lemma about the interaction with "normal" substitution. *)
Lemma subst_subst_map x es map e :
subst_closed [] map
subst x es (subst_map (delete x map) e) =
subst_map (<[x:=es]> map) e.
Proof.
revert map es x; induction e; intros map v0 xx Hclosed; simpl;
try (f_equal; eauto).
- destruct (decide (xx=x)) as [->|Hne].
+ rewrite lookup_delete // lookup_insert //. simpl.
rewrite decide_True //.
+ rewrite lookup_delete_ne // lookup_insert_ne //.
destruct (_ !! x) as [rr|] eqn:Helem.
* apply Hclosed in Helem.
by apply subst_is_closed_nil.
* simpl. rewrite decide_False //.
- destruct x; simpl; first by auto.
case_decide.
+ simplify_eq. rewrite delete_idemp delete_insert_delete. done.
+ rewrite delete_insert_ne //; last congruence. rewrite delete_commute. apply IHe.
eapply subst_closed_subseteq; last done.
apply map_delete_subseteq.
Qed.
Lemma subst'_subst_map b (es : expr) map e :
subst_closed [] map
subst' b es (subst_map (binder_delete b map) e) =
subst_map (binder_insert b es map) e.
Proof.
destruct b; first done.
apply subst_subst_map.
Qed.
Lemma closed_subst_weaken e map X Y :
subst_closed [] map
( x, x X x dom map x Y)
closed X e
closed Y (subst_map map e).
Proof.
induction e in X, Y, map |-*; simpl; intros Hmclosed Hsub Hcl.
{ (* vars *)
destruct (map !! x) as [es | ] eqn:Heq.
+ apply is_closed_weaken_nil. by eapply Hmclosed.
+ apply bool_decide_pack. apply Hsub; first by eapply bool_decide_unpack.
by apply not_elem_of_dom.
}
{ (* lambdas *)
eapply IHe; last done.
+ eapply subst_closed_subseteq; last done.
destruct x; first done. apply map_delete_subseteq.
+ intros y. destruct x as [ | x]; first by apply Hsub.
rewrite !elem_of_cons. intros [-> | Hy] Hn; first by left.
destruct (decide (y = x)) as [ -> | Hneq]; first by left.
right. eapply Hsub; first done. set_solver.
}
(* all other cases *)
all: unfold closed in *; simpl in *.
all: repeat match goal with
| H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ]
end.
all: repeat match goal with
| |- Is_true (_ && _) => apply andb_True; split
end.
all: try naive_solver.
Qed.
Lemma subst_map_closed' X Y Θ e:
closed Y e
( x, x Y if Θ !! x is (Some e') then closed X e' else x X)
closed X (subst_map Θ e).
Proof.
induction e in X, Θ, Y |-*; simpl.
{ intros Hel%bool_decide_unpack Hcl.
eapply Hcl in Hel.
destruct (Θ !! x); first done.
simpl. by eapply bool_decide_pack. }
{ intros Hcl Hcl'. destruct x as [|x]; simpl; first naive_solver.
eapply IHe; first done.
intros y [|]%elem_of_cons.
+ subst. rewrite lookup_delete. set_solver.
+ destruct (decide (x = y)); first by subst; rewrite lookup_delete; set_solver.
rewrite lookup_delete_ne //=. eapply Hcl' in H.
destruct lookup; last set_solver.
eapply is_closed_weaken; eauto with set_solver. }
all: unfold closed; simpl; naive_solver.
Qed.
Lemma subst_map_closed'_2 X Θ e:
closed (X ++ (elements (dom Θ))) e ->
subst_closed X Θ ->
closed X (subst_map Θ e).
Proof.
intros Hcl Hsubst.
eapply subst_map_closed'; first eassumption.
intros x Hx.
destruct (Θ !! x) as [e'|] eqn:Heq.
- eauto.
- by eapply elem_of_app in Hx as [H|H%elem_of_elements%not_elem_of_dom].
Qed.