You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
semantics-2023/theories/type_systems/systemf_mu/parallel_subst.v

276 lines
9.8 KiB

From stdpp Require Import prelude.
From iris Require Import prelude.
From semantics.lib Require Import facts maps.
From semantics.ts.systemf_mu Require Import lang.
Fixpoint subst_map (xs : gmap string expr) (e : expr) : expr :=
match e with
| Lit l => Lit l
| Var y => match xs !! y with Some es => es | _ => Var y end
| App e1 e2 => App (subst_map xs e1) (subst_map xs e2)
| Lam x e => Lam x (subst_map (binder_delete x xs) e)
| UnOp op e => UnOp op (subst_map xs e)
| BinOp op e1 e2 => BinOp op (subst_map xs e1) (subst_map xs e2)
| If e0 e1 e2 => If (subst_map xs e0) (subst_map xs e1) (subst_map xs e2)
| TApp e => TApp (subst_map xs e)
| TLam e => TLam (subst_map xs e)
| Pack e => Pack (subst_map xs e)
| Unpack x e1 e2 => Unpack x (subst_map xs e1) (subst_map (binder_delete x xs) e2)
| Pair e1 e2 => Pair (subst_map xs e1) (subst_map xs e2)
| Fst e => Fst (subst_map xs e)
| Snd e => Snd (subst_map xs e)
| InjL e => InjL (subst_map xs e)
| InjR e => InjR (subst_map xs e)
| Case e e1 e2 => Case (subst_map xs e) (subst_map xs e1) (subst_map xs e2)
| Roll e => Roll (subst_map xs e)
| Unroll e => Unroll (subst_map xs e)
end.
Lemma subst_map_empty e :
subst_map e = e.
Proof.
induction e; simpl; f_equal; eauto.
all: destruct x; simpl; [done | by rewrite !delete_empty..].
Qed.
Lemma subst_map_is_closed X e xs :
is_closed X e
( x : string, x dom xs x X)
subst_map xs e = e.
Proof.
intros Hclosed Hd.
induction e in xs, X, Hd, Hclosed |-*; simpl in *;try done.
all: repeat match goal with
| H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ]
end.
{ (* Var *)
apply bool_decide_spec in Hclosed.
assert (xs !! x = None) as ->; last done.
destruct (xs !! x) as [s | ] eqn:Helem; last done.
exfalso; eapply Hd; last apply Hclosed.
apply elem_of_dom; eauto.
}
{ (* lambdas *)
erewrite IHe; [done | done |].
intros y. destruct x as [ | x]; first apply Hd.
simpl.
rewrite dom_delete elem_of_difference not_elem_of_singleton.
intros [Hnx%Hd Hneq]. rewrite elem_of_cons. intros [? | ?]; done.
}
8: { (* Unpack *)
erewrite IHe1; [ | done | done].
erewrite IHe2; [ done | done | ].
intros y. destruct x as [ | x]; first apply Hd.
simpl.
rewrite dom_delete elem_of_difference not_elem_of_singleton.
intros [Hnx%Hd Hneq]. rewrite elem_of_cons. intros [? | ?]; done.
}
(* all other cases *)
all: repeat match goal with
| H : _ _, _ _ subst_map _ _ = _ |- _ => erewrite H; clear H
end; done.
Qed.
Lemma subst_map_subst map x (e e' : expr) :
is_closed [] e'
subst_map map (subst x e' e) = subst_map (<[x:=e']>map) e.
Proof.
intros He'.
revert x map; induction e; intros xx map; simpl;
try (f_equal; eauto).
- case_decide.
+ simplify_eq/=. rewrite lookup_insert.
rewrite (subst_map_is_closed []); [done | apply He' | ].
intros ? ?. apply not_elem_of_nil.
+ rewrite lookup_insert_ne; done.
- destruct x; simpl; first done.
+ case_decide.
* simplify_eq/=. by rewrite delete_insert_delete.
* rewrite delete_insert_ne; last by congruence. done.
- destruct x; simpl; first done.
+ case_decide.
* simplify_eq/=. by rewrite delete_insert_delete.
* rewrite delete_insert_ne; last by congruence. done.
Qed.
Definition subst_is_closed (X : list string) (map : gmap string expr) :=
x e, map !! x = Some e closed X e.
Lemma subst_is_closed_subseteq X map1 map2 :
map1 map2 subst_is_closed X map2 subst_is_closed X map1.
Proof.
intros Hsub Hclosed2 x e Hl. eapply Hclosed2, map_subseteq_spec; done.
Qed.
Lemma subst_subst_map x es map e :
subst_is_closed [] map
subst x es (subst_map (delete x map) e) =
subst_map (<[x:=es]>map) e.
Proof.
revert map es x; induction e; intros map v0 xx Hclosed; simpl;
try (f_equal; eauto).
- destruct (decide (xx=x)) as [->|Hne].
+ rewrite lookup_delete // lookup_insert //. simpl.
rewrite decide_True //.
+ rewrite lookup_delete_ne // lookup_insert_ne //.
destruct (_ !! x) as [rr|] eqn:Helem.
* apply Hclosed in Helem.
by apply subst_is_closed_nil.
* simpl. rewrite decide_False //.
- destruct x; simpl; first by auto.
case_decide.
+ simplify_eq. rewrite delete_idemp delete_insert_delete. done.
+ rewrite delete_insert_ne //; last congruence. rewrite delete_commute. apply IHe.
eapply subst_is_closed_subseteq; last done.
apply map_delete_subseteq.
- destruct x; simpl; first by auto.
case_decide.
+ simplify_eq. rewrite delete_idemp delete_insert_delete. done.
+ rewrite delete_insert_ne //; last congruence. rewrite delete_commute. apply IHe2.
eapply subst_is_closed_subseteq; last done.
apply map_delete_subseteq.
Qed.
Lemma subst'_subst_map b (es : expr) map e :
subst_is_closed [] map
subst' b es (subst_map (binder_delete b map) e) =
subst_map (binder_insert b es map) e.
Proof.
destruct b; first done.
apply subst_subst_map.
Qed.
Lemma closed_subst_weaken e map X Y :
subst_is_closed [] map
( x, x X x dom map x Y)
closed X e
closed Y (subst_map map e).
Proof.
induction e in X, Y, map |-*; rewrite /closed; simpl; intros Hmclosed Hsub Hcl; first done.
all: repeat match goal with
| H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ]
end.
{ (* vars *)
destruct (map !! x) as [es | ] eqn:Heq.
+ apply is_closed_weaken_nil. by eapply Hmclosed.
+ apply bool_decide_pack. apply Hsub; first by eapply bool_decide_unpack.
by apply not_elem_of_dom.
}
{ (* lambdas *)
eapply IHe; last done.
+ eapply subst_is_closed_subseteq; last done.
destruct x; first done. apply map_delete_subseteq.
+ intros y. destruct x as [ | x]; first by apply Hsub.
rewrite !elem_of_cons. intros [-> | Hy] Hn; first by left.
destruct (decide (y = x)) as [ -> | Hneq]; first by left.
right. eapply Hsub; first done. set_solver.
}
8: { (* unpack *)
apply andb_True; split; first naive_solver.
eapply IHe2; last done.
+ eapply subst_is_closed_subseteq; last done.
destruct x; first done. apply map_delete_subseteq.
+ intros y. destruct x as [ | x]; first by apply Hsub.
rewrite !elem_of_cons. intros [-> | Hy] Hn; first by left.
destruct (decide (y = x)) as [ -> | Hneq]; first by left.
right. eapply Hsub; first done. set_solver.
}
(* all other cases *)
all: repeat match goal with
| |- Is_true (_ && _) => apply andb_True; split
end.
all: naive_solver.
Qed.
Lemma subst_is_closed_weaken X1 X2 θ :
subst_is_closed X1 θ
X1 X2
subst_is_closed X2 θ.
Proof.
intros Hcl Hincl x e Hlook.
eapply is_closed_weaken; last done.
by eapply Hcl.
Qed.
Lemma subst_is_closed_weaken_nil X θ :
subst_is_closed [] θ
subst_is_closed X θ.
Proof.
intros; eapply subst_is_closed_weaken; first done.
apply list_subseteq_nil.
Qed.
Lemma subst_is_closed_insert X e f θ :
is_closed X e
subst_is_closed X (delete f θ)
subst_is_closed X (<[f := e]> θ).
Proof.
intros Hcl Hcl' x e'.
destruct (decide (x = f)) as [<- | ?].
- rewrite lookup_insert. intros [= <-]. done.
- rewrite lookup_insert_ne; last done.
intros Hlook. eapply Hcl'.
rewrite lookup_delete_ne; done.
Qed.
(* NOTE: this is a simplified version of the tactic in tactics.v which
suffice for this proof *)
Ltac simplify_closed :=
repeat match goal with
| |- closed _ _ => unfold closed; simpl
| |- Is_true (_ && _) => simpl; rewrite !andb_True; split_and!
| H : closed _ _ |- _ => unfold closed in H; simpl in H
| H: Is_true (_ && _) |- _ => simpl in H; apply andb_True in H
| H : _ _ |- _ => destruct H
end.
Lemma is_closed_subst_map X θ e :
subst_is_closed X θ
closed (X ++ elements (dom θ)) e
closed X (subst_map θ e).
Proof.
induction e in X, θ |-*; eauto.
all: try solve [intros; simplify_closed; naive_solver].
- unfold subst_map.
destruct (θ !! x) eqn:Heq.
+ intros Hcl _. eapply Hcl; done.
+ intros _ Hcl.
apply closed_is_closed in Hcl.
apply bool_decide_eq_true in Hcl.
apply elem_of_app in Hcl.
destruct Hcl as [ | H].
* apply closed_is_closed. by apply bool_decide_eq_true.
* apply elem_of_elements in H.
by apply not_elem_of_dom in Heq.
- intros. simplify_closed.
eapply IHe.
+ destruct x as [ | x]; simpl; first done.
intros y e'. rewrite lookup_delete_Some. intros (? & Hlook%H).
eapply is_closed_weaken; first done.
by apply list_subseteq_cons_r.
+ eapply is_closed_weaken; first done.
simpl. destruct x as [ | x]; first done; simpl.
apply list_subseteq_cons_l.
apply stdpp.sets.elem_of_subseteq.
intros y; simpl. rewrite elem_of_cons !elem_of_app.
intros [ | Helem]; first naive_solver.
destruct (decide (x = y)) as [<- | Hneq]; first naive_solver.
right. right. apply elem_of_elements. rewrite dom_delete elem_of_difference elem_of_singleton.
apply elem_of_elements in Helem; done.
- intros. simplify_closed. { naive_solver. }
(* same proof as for lambda *)
eapply IHe2.
+ destruct x as [ | x]; simpl; first done.
intros y e'. rewrite lookup_delete_Some. intros (? & Hlook%H).
eapply is_closed_weaken; first done.
by apply list_subseteq_cons_r.
+ eapply is_closed_weaken; first done.
simpl. destruct x as [ | x]; first done; simpl.
apply list_subseteq_cons_l.
apply stdpp.sets.elem_of_subseteq.
intros y; simpl. rewrite elem_of_cons !elem_of_app.
intros [ | Helem]; first naive_solver.
destruct (decide (x = y)) as [<- | Hneq]; first naive_solver.
right. right. apply elem_of_elements. rewrite dom_delete elem_of_difference elem_of_singleton.
apply elem_of_elements in Helem; done.
Qed.