|
|
@ -16,122 +16,21 @@ import Mathlib.Topology.Compactness.Compact
|
|
|
|
import Mathlib.Topology.Separation
|
|
|
|
import Mathlib.Topology.Separation
|
|
|
|
import Mathlib.Topology.Homeomorph
|
|
|
|
import Mathlib.Topology.Homeomorph
|
|
|
|
|
|
|
|
|
|
|
|
import Lean.Meta.Tactic.Util
|
|
|
|
import Rubin.Tactic
|
|
|
|
import Lean.Elab.Tactic.Basic
|
|
|
|
|
|
|
|
import Lean.Meta.Tactic.Simp.Main
|
|
|
|
|
|
|
|
import Mathlib.Tactic.Ring.Basic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#align_import rubin
|
|
|
|
#align_import rubin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace Rubin
|
|
|
|
|
|
|
|
open Rubin.Tactic
|
|
|
|
|
|
|
|
|
|
|
|
-- TODO: remove
|
|
|
|
-- TODO: remove
|
|
|
|
--@[simp]
|
|
|
|
--@[simp]
|
|
|
|
theorem Rubin.GroupActionExt.smul_smul' {G α : Type _} [Group G] [MulAction G α] {g h : G} {x : α} :
|
|
|
|
theorem GroupActionExt.smul_smul' {G α : Type _} [Group G] [MulAction G α] {g h : G} {x : α} :
|
|
|
|
g • h • x = (g * h) • x :=
|
|
|
|
g • h • x = (g * h) • x :=
|
|
|
|
smul_smul g h x
|
|
|
|
smul_smul g h x
|
|
|
|
#align smul_smul' Rubin.GroupActionExt.smul_smul'
|
|
|
|
#align smul_smul' Rubin.GroupActionExt.smul_smul'
|
|
|
|
|
|
|
|
|
|
|
|
--@[simp]
|
|
|
|
theorem equiv_congr_ne {ι ι' : Type _} (e : ι ≃ ι') {x y : ι} : x ≠ y → e x ≠ e y :=
|
|
|
|
theorem Rubin.GroupActionExt.smul_eq_smul_inv {G α : Type _} [Group G] [MulAction G α] {g h : G}
|
|
|
|
|
|
|
|
{x y : α} : g • x = h • y ↔ (h⁻¹ * g) • x = y :=
|
|
|
|
|
|
|
|
by
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
|
|
|
· intro hyp
|
|
|
|
|
|
|
|
let res := congr_arg ((· • ·) h⁻¹) hyp
|
|
|
|
|
|
|
|
simp at res
|
|
|
|
|
|
|
|
rw [← mul_smul] at res
|
|
|
|
|
|
|
|
exact res
|
|
|
|
|
|
|
|
· intro hyp
|
|
|
|
|
|
|
|
rw [<-hyp, mul_smul]
|
|
|
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
#align smul_eq_smul Rubin.GroupActionExt.smul_eq_smul_inv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.GroupActionExt.smul_succ {G α : Type _} (n : ℕ) [Group G] [MulAction G α] {g : G}
|
|
|
|
|
|
|
|
{x : α} : g ^ n.succ • x = g • g ^ n • x :=
|
|
|
|
|
|
|
|
by
|
|
|
|
|
|
|
|
rw [pow_succ, mul_smul]
|
|
|
|
|
|
|
|
#align smul_succ Rubin.GroupActionExt.smul_succ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
section GroupActionTactic
|
|
|
|
|
|
|
|
-- open Lean.Elab.Tactic
|
|
|
|
|
|
|
|
-- open Lean.Meta.Simp
|
|
|
|
|
|
|
|
open Lean.Parser.Tactic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
syntax (name := group_action₁) "group_action₁" (location)?: tactic
|
|
|
|
|
|
|
|
macro_rules
|
|
|
|
|
|
|
|
| `(tactic| group_action₁ $[at $location]?) => `(tactic| simp only [
|
|
|
|
|
|
|
|
smul_smul,
|
|
|
|
|
|
|
|
Rubin.GroupActionExt.smul_eq_smul_inv,
|
|
|
|
|
|
|
|
Rubin.GroupActionExt.smul_succ,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
one_smul,
|
|
|
|
|
|
|
|
mul_one,
|
|
|
|
|
|
|
|
one_mul,
|
|
|
|
|
|
|
|
sub_self,
|
|
|
|
|
|
|
|
add_neg_self,
|
|
|
|
|
|
|
|
neg_add_self,
|
|
|
|
|
|
|
|
neg_neg,
|
|
|
|
|
|
|
|
tsub_self,
|
|
|
|
|
|
|
|
<-mul_assoc,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
one_pow,
|
|
|
|
|
|
|
|
one_zpow,
|
|
|
|
|
|
|
|
mul_zpow_neg_one,
|
|
|
|
|
|
|
|
zpow_zero,
|
|
|
|
|
|
|
|
mul_zpow,
|
|
|
|
|
|
|
|
zpow_sub,
|
|
|
|
|
|
|
|
zpow_ofNat,
|
|
|
|
|
|
|
|
zpow_neg_one,
|
|
|
|
|
|
|
|
<-zpow_mul,
|
|
|
|
|
|
|
|
zpow_add_one,
|
|
|
|
|
|
|
|
zpow_one_add,
|
|
|
|
|
|
|
|
zpow_add,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Int.ofNat_add,
|
|
|
|
|
|
|
|
Int.ofNat_mul,
|
|
|
|
|
|
|
|
Int.ofNat_zero,
|
|
|
|
|
|
|
|
Int.ofNat_one,
|
|
|
|
|
|
|
|
Int.mul_neg_eq_neg_mul_symm,
|
|
|
|
|
|
|
|
Int.neg_mul_eq_neg_mul_symm,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Mathlib.Tactic.Group.zpow_trick,
|
|
|
|
|
|
|
|
Mathlib.Tactic.Group.zpow_trick_one,
|
|
|
|
|
|
|
|
Mathlib.Tactic.Group.zpow_trick_one',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
commutatorElement_def
|
|
|
|
|
|
|
|
] $[at $location]?
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/-- Tactic for normalizing expressions in group actions, without assuming
|
|
|
|
|
|
|
|
commutativity, using only the group axioms without any information about
|
|
|
|
|
|
|
|
which group is manipulated.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
```lean
|
|
|
|
|
|
|
|
example {G α : Type} [Group G] [MulAction G α] (a b : G) (x y : α) (h : a • b • x = a • y) : b⁻¹ • y = x := by
|
|
|
|
|
|
|
|
group_action at h -- normalizes `h` which becomes `h : c = d`
|
|
|
|
|
|
|
|
rw [←h] -- the goal is now `a*d*d⁻¹ = a`
|
|
|
|
|
|
|
|
group_action -- which then normalized and closed
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
syntax (name := group_action) "group_action" (location)?: tactic
|
|
|
|
|
|
|
|
macro_rules
|
|
|
|
|
|
|
|
| `(tactic| group_action $[at $location]?) => `(tactic|
|
|
|
|
|
|
|
|
repeat (fail_if_no_progress (group_action₁ $[at $location]? <;> group $[at $location]?))
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example {G α: Type _} [Group G] [MulAction G α] (g h: G) (x: α): g • h • x = (g * h) • x := by
|
|
|
|
|
|
|
|
group_action
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example {G α : Type} [Group G] [MulAction G α] (a b : G) (x y : α) (h : a • b • x = a • y) : b⁻¹ • y = x := by
|
|
|
|
|
|
|
|
group_action at h -- normalizes `h` which becomes `h : c = d`
|
|
|
|
|
|
|
|
rw [←h] -- the goal is now `a*d*d⁻¹ = a`
|
|
|
|
|
|
|
|
group_action -- which then normalized and closed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example (G α : Type _) [Group G] (a b c : G) [MulAction G α] (x : α) :
|
|
|
|
|
|
|
|
⁅a * b, c⁆ • x = (a * ⁅b, c⁆ * a⁻¹ * ⁅a, c⁆) • x := by
|
|
|
|
|
|
|
|
group_action
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.equiv_congr_ne {ι ι' : Type _} (e : ι ≃ ι') {x y : ι} : x ≠ y → e x ≠ e y :=
|
|
|
|
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro x_ne_y
|
|
|
|
intro x_ne_y
|
|
|
|
by_contra h
|
|
|
|
by_contra h
|
|
|
@ -141,7 +40,7 @@ theorem Rubin.equiv_congr_ne {ι ι' : Type _} (e : ι ≃ ι') {x y : ι} : x
|
|
|
|
|
|
|
|
|
|
|
|
-- this definitely should be added to mathlib!
|
|
|
|
-- this definitely should be added to mathlib!
|
|
|
|
@[simp, to_additive]
|
|
|
|
@[simp, to_additive]
|
|
|
|
theorem Rubin.GroupActionExt.subgroup_mk_smul {G α : Type _} [Group G] [MulAction G α]
|
|
|
|
theorem GroupActionExt.subgroup_mk_smul {G α : Type _} [Group G] [MulAction G α]
|
|
|
|
{S : Subgroup G} {g : G} (hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a :=
|
|
|
|
{S : Subgroup G} {g : G} (hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a :=
|
|
|
|
rfl
|
|
|
|
rfl
|
|
|
|
#align Subgroup.mk_smul Rubin.GroupActionExt.subgroup_mk_smul
|
|
|
|
#align Subgroup.mk_smul Rubin.GroupActionExt.subgroup_mk_smul
|
|
|
@ -155,10 +54,10 @@ variable {G α β : Type _} [Group G]
|
|
|
|
----------------------------------------------------------------
|
|
|
|
----------------------------------------------------------------
|
|
|
|
section Groups
|
|
|
|
section Groups
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.bracket_mul {f g : G} : ⁅f, g⁆ = f * g * f⁻¹ * g⁻¹ := by tauto
|
|
|
|
theorem bracket_mul {f g : G} : ⁅f, g⁆ = f * g * f⁻¹ * g⁻¹ := by tauto
|
|
|
|
#align bracket_mul Rubin.bracket_mul
|
|
|
|
#align bracket_mul Rubin.bracket_mul
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.is_algebraically_disjoint (f g : G) :=
|
|
|
|
def is_algebraically_disjoint (f g : G) :=
|
|
|
|
∀ h : G,
|
|
|
|
∀ h : G,
|
|
|
|
¬Commute f h →
|
|
|
|
¬Commute f h →
|
|
|
|
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
|
|
|
|
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
|
|
|
@ -172,7 +71,7 @@ section Actions
|
|
|
|
variable [MulAction G α]
|
|
|
|
variable [MulAction G α]
|
|
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
@[simp]
|
|
|
|
theorem Rubin.orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
|
|
|
|
theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
|
|
|
|
MulAction.orbit (⊥ : Subgroup G) p = {p} :=
|
|
|
|
MulAction.orbit (⊥ : Subgroup G) p = {p} :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
ext1
|
|
|
|
ext1
|
|
|
@ -187,16 +86,16 @@ theorem Rubin.orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
|
|
|
|
--------------------------------
|
|
|
|
--------------------------------
|
|
|
|
section SmulImage
|
|
|
|
section SmulImage
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.GroupActionExt.smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y :=
|
|
|
|
theorem GroupActionExt.smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y :=
|
|
|
|
congr_arg ((· • ·) g) h
|
|
|
|
congr_arg ((· • ·) g) h
|
|
|
|
#align smul_congr Rubin.GroupActionExt.smul_congr
|
|
|
|
#align smul_congr Rubin.GroupActionExt.smul_congr
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x :=
|
|
|
|
theorem GroupActionExt.smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x :=
|
|
|
|
⟨fun h => (Rubin.GroupActionExt.smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h =>
|
|
|
|
⟨fun h => (Rubin.GroupActionExt.smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h =>
|
|
|
|
(Rubin.GroupActionExt.smul_congr g h).symm.trans (smul_inv_smul g x)⟩
|
|
|
|
(Rubin.GroupActionExt.smul_congr g h).symm.trans (smul_inv_smul g x)⟩
|
|
|
|
#align smul_eq_iff_inv_smul_eq Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq
|
|
|
|
#align smul_eq_iff_inv_smul_eq Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.GroupActionExt.smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ℕ) :
|
|
|
|
theorem GroupActionExt.smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ℕ) :
|
|
|
|
g • x = x → g ^ n • x = x := by
|
|
|
|
g • x = x → g ^ n • x = x := by
|
|
|
|
induction n with
|
|
|
|
induction n with
|
|
|
|
| zero => simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff]
|
|
|
|
| zero => simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff]
|
|
|
@ -206,7 +105,7 @@ theorem Rubin.GroupActionExt.smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ℕ) :
|
|
|
|
rw [← mul_smul, ← pow_succ]
|
|
|
|
rw [← mul_smul, ← pow_succ]
|
|
|
|
#align smul_pow_eq_of_smul_eq Rubin.GroupActionExt.smul_pow_eq_of_smul_eq
|
|
|
|
#align smul_pow_eq_of_smul_eq Rubin.GroupActionExt.smul_pow_eq_of_smul_eq
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ℤ) :
|
|
|
|
theorem GroupActionExt.smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ℤ) :
|
|
|
|
g • x = x → g ^ n • x = x := by
|
|
|
|
g • x = x → g ^ n • x = x := by
|
|
|
|
intro h
|
|
|
|
intro h
|
|
|
|
cases n with
|
|
|
|
cases n with
|
|
|
@ -219,30 +118,30 @@ theorem Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ℤ)
|
|
|
|
exact res
|
|
|
|
exact res
|
|
|
|
#align smul_zpow_eq_of_smul_eq Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq
|
|
|
|
#align smul_zpow_eq_of_smul_eq Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.GroupActionExt.is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α]
|
|
|
|
def GroupActionExt.is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α]
|
|
|
|
[MulAction G β] (f : α → β) :=
|
|
|
|
[MulAction G β] (f : α → β) :=
|
|
|
|
∀ g : G, ∀ x : α, f (g • x) = g • f x
|
|
|
|
∀ g : G, ∀ x : α, f (g • x) = g • f x
|
|
|
|
#align is_equivariant Rubin.GroupActionExt.is_equivariant
|
|
|
|
#align is_equivariant Rubin.GroupActionExt.is_equivariant
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.SmulImage.smulImage' (g : G) (U : Set α) :=
|
|
|
|
def SmulImage.smulImage' (g : G) (U : Set α) :=
|
|
|
|
{x | g⁻¹ • x ∈ U}
|
|
|
|
{x | g⁻¹ • x ∈ U}
|
|
|
|
#align subset_img' Rubin.SmulImage.smulImage'
|
|
|
|
#align subset_img' Rubin.SmulImage.smulImage'
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.SmulImage.smul_preimage' (g : G) (U : Set α) :=
|
|
|
|
def SmulImage.smul_preimage' (g : G) (U : Set α) :=
|
|
|
|
{x | g • x ∈ U}
|
|
|
|
{x | g • x ∈ U}
|
|
|
|
#align subset_preimg' Rubin.SmulImage.smul_preimage'
|
|
|
|
#align subset_preimg' Rubin.SmulImage.smul_preimage'
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.SmulImage.SmulImage (g : G) (U : Set α) :=
|
|
|
|
def SmulImage.SmulImage (g : G) (U : Set α) :=
|
|
|
|
(· • ·) g '' U
|
|
|
|
(· • ·) g '' U
|
|
|
|
#align subset_img Rubin.SmulImage.SmulImage
|
|
|
|
#align subset_img Rubin.SmulImage.SmulImage
|
|
|
|
|
|
|
|
|
|
|
|
infixl:60 "•''" => Rubin.SmulImage.SmulImage
|
|
|
|
infixl:60 "•''" => Rubin.SmulImage.SmulImage
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.smulImage_def {g : G} {U : Set α} : g•''U = (· • ·) g '' U :=
|
|
|
|
theorem SmulImage.smulImage_def {g : G} {U : Set α} : g•''U = (· • ·) g '' U :=
|
|
|
|
rfl
|
|
|
|
rfl
|
|
|
|
#align subset_img_def Rubin.SmulImage.smulImage_def
|
|
|
|
#align subset_img_def Rubin.SmulImage.smulImage_def
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.mem_smulImage {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ • x ∈ U :=
|
|
|
|
theorem SmulImage.mem_smulImage {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ • x ∈ U :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
rw [Rubin.SmulImage.smulImage_def, Set.mem_image ((· • ·) g) U x]
|
|
|
|
rw [Rubin.SmulImage.smulImage_def, Set.mem_image ((· • ·) g) U x]
|
|
|
|
constructor
|
|
|
|
constructor
|
|
|
@ -253,14 +152,14 @@ theorem Rubin.SmulImage.mem_smulImage {x : α} {g : G} {U : Set α} : x ∈ g•
|
|
|
|
exact ⟨g⁻¹ • x, ⟨Set.mem_preimage.mp h, smul_inv_smul g x⟩⟩
|
|
|
|
exact ⟨g⁻¹ • x, ⟨Set.mem_preimage.mp h, smul_inv_smul g x⟩⟩
|
|
|
|
#align mem_smul'' Rubin.SmulImage.mem_smulImage
|
|
|
|
#align mem_smul'' Rubin.SmulImage.mem_smulImage
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹•''U ↔ g • x ∈ U :=
|
|
|
|
theorem SmulImage.mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹•''U ↔ g • x ∈ U :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
let msi := @Rubin.SmulImage.mem_smulImage _ _ _ _ x g⁻¹ U
|
|
|
|
let msi := @Rubin.SmulImage.mem_smulImage _ _ _ _ x g⁻¹ U
|
|
|
|
rw [inv_inv] at msi
|
|
|
|
rw [inv_inv] at msi
|
|
|
|
exact msi
|
|
|
|
exact msi
|
|
|
|
#align mem_inv_smul'' Rubin.SmulImage.mem_inv_smulImage
|
|
|
|
#align mem_inv_smul'' Rubin.SmulImage.mem_inv_smulImage
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.mul_smulImage (g h : G) (U : Set α) : g * h•''U = g•''(h•''U) :=
|
|
|
|
theorem SmulImage.mul_smulImage (g h : G) (U : Set α) : g * h•''U = g•''(h•''U) :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
ext
|
|
|
|
ext
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, ←
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, ←
|
|
|
@ -268,18 +167,18 @@ theorem Rubin.SmulImage.mul_smulImage (g h : G) (U : Set α) : g * h•''U = g
|
|
|
|
#align mul_smul'' Rubin.SmulImage.mul_smulImage
|
|
|
|
#align mul_smul'' Rubin.SmulImage.mul_smulImage
|
|
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
@[simp]
|
|
|
|
theorem Rubin.SmulImage.smulImage_smulImage {g h : G} {U : Set α} : g•''(h•''U) = g * h•''U :=
|
|
|
|
theorem SmulImage.smulImage_smulImage {g h : G} {U : Set α} : g•''(h•''U) = g * h•''U :=
|
|
|
|
(Rubin.SmulImage.mul_smulImage g h U).symm
|
|
|
|
(Rubin.SmulImage.mul_smulImage g h U).symm
|
|
|
|
#align smul''_smul'' Rubin.SmulImage.smulImage_smulImage
|
|
|
|
#align smul''_smul'' Rubin.SmulImage.smulImage_smulImage
|
|
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
@[simp]
|
|
|
|
theorem Rubin.SmulImage.one_smulImage (U : Set α) : (1 : G)•''U = U :=
|
|
|
|
theorem SmulImage.one_smulImage (U : Set α) : (1 : G)•''U = U :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
ext
|
|
|
|
ext
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, inv_one, one_smul]
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, inv_one, one_smul]
|
|
|
|
#align one_smul'' Rubin.SmulImage.one_smulImage
|
|
|
|
#align one_smul'' Rubin.SmulImage.one_smulImage
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.disjoint_smulImage (g : G) {U V : Set α} :
|
|
|
|
theorem SmulImage.disjoint_smulImage (g : G) {U V : Set α} :
|
|
|
|
Disjoint U V → Disjoint (g•''U) (g•''V) :=
|
|
|
|
Disjoint U V → Disjoint (g•''U) (g•''V) :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro disjoint_U_V
|
|
|
|
intro disjoint_U_V
|
|
|
@ -291,32 +190,32 @@ theorem Rubin.SmulImage.disjoint_smulImage (g : G) {U V : Set α} :
|
|
|
|
#align disjoint_smul'' Rubin.SmulImage.disjoint_smulImage
|
|
|
|
#align disjoint_smul'' Rubin.SmulImage.disjoint_smulImage
|
|
|
|
|
|
|
|
|
|
|
|
-- TODO: check if this is actually needed
|
|
|
|
-- TODO: check if this is actually needed
|
|
|
|
theorem Rubin.SmulImage.smulImage_congr (g : G) {U V : Set α} : U = V → g•''U = g•''V :=
|
|
|
|
theorem SmulImage.smulImage_congr (g : G) {U V : Set α} : U = V → g•''U = g•''V :=
|
|
|
|
congr_arg fun W : Set α => g•''W
|
|
|
|
congr_arg fun W : Set α => g•''W
|
|
|
|
#align smul''_congr Rubin.SmulImage.smulImage_congr
|
|
|
|
#align smul''_congr Rubin.SmulImage.smulImage_congr
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.smulImage_subset (g : G) {U V : Set α} : U ⊆ V → g•''U ⊆ g•''V :=
|
|
|
|
theorem SmulImage.smulImage_subset (g : G) {U V : Set α} : U ⊆ V → g•''U ⊆ g•''V :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro h1 x
|
|
|
|
intro h1 x
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage]
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage]
|
|
|
|
exact fun h2 => h1 h2
|
|
|
|
exact fun h2 => h1 h2
|
|
|
|
#align smul''_subset Rubin.SmulImage.smulImage_subset
|
|
|
|
#align smul''_subset Rubin.SmulImage.smulImage_subset
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.smulImage_union (g : G) {U V : Set α} : g•''U ∪ V = (g•''U) ∪ (g•''V) :=
|
|
|
|
theorem SmulImage.smulImage_union (g : G) {U V : Set α} : g•''U ∪ V = (g•''U) ∪ (g•''V) :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
ext
|
|
|
|
ext
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.SmulImage.mem_smulImage,
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.SmulImage.mem_smulImage,
|
|
|
|
Rubin.SmulImage.mem_smulImage]
|
|
|
|
Rubin.SmulImage.mem_smulImage]
|
|
|
|
#align smul''_union Rubin.SmulImage.smulImage_union
|
|
|
|
#align smul''_union Rubin.SmulImage.smulImage_union
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.smulImage_inter (g : G) {U V : Set α} : g•''U ∩ V = (g•''U) ∩ (g•''V) :=
|
|
|
|
theorem SmulImage.smulImage_inter (g : G) {U V : Set α} : g•''U ∩ V = (g•''U) ∩ (g•''V) :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
ext
|
|
|
|
ext
|
|
|
|
rw [Set.mem_inter_iff, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage,
|
|
|
|
rw [Set.mem_inter_iff, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage,
|
|
|
|
Rubin.SmulImage.mem_smulImage, Set.mem_inter_iff]
|
|
|
|
Rubin.SmulImage.mem_smulImage, Set.mem_inter_iff]
|
|
|
|
#align smul''_inter Rubin.SmulImage.smulImage_inter
|
|
|
|
#align smul''_inter Rubin.SmulImage.smulImage_inter
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.smulImage_eq_inv_preimage {g : G} {U : Set α} : g•''U = (· • ·) g⁻¹ ⁻¹' U :=
|
|
|
|
theorem SmulImage.smulImage_eq_inv_preimage {g : G} {U : Set α} : g•''U = (· • ·) g⁻¹ ⁻¹' U :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
ext
|
|
|
|
ext
|
|
|
|
constructor
|
|
|
|
constructor
|
|
|
@ -324,7 +223,7 @@ theorem Rubin.SmulImage.smulImage_eq_inv_preimage {g : G} {U : Set α} : g•''U
|
|
|
|
· intro h; rw [Rubin.SmulImage.mem_smulImage]; exact Set.mem_preimage.mp h
|
|
|
|
· intro h; rw [Rubin.SmulImage.mem_smulImage]; exact Set.mem_preimage.mp h
|
|
|
|
#align smul''_eq_inv_preimage Rubin.SmulImage.smulImage_eq_inv_preimage
|
|
|
|
#align smul''_eq_inv_preimage Rubin.SmulImage.smulImage_eq_inv_preimage
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulImage.smulImage_eq_of_smul_eq {g h : G} {U : Set α} :
|
|
|
|
theorem SmulImage.smulImage_eq_of_smul_eq {g h : G} {U : Set α} :
|
|
|
|
(∀ x ∈ U, g • x = h • x) → g•''U = h•''U :=
|
|
|
|
(∀ x ∈ U, g • x = h • x) → g•''U = h•''U :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro hU
|
|
|
|
intro hU
|
|
|
@ -342,40 +241,40 @@ end SmulImage
|
|
|
|
--------------------------------
|
|
|
|
--------------------------------
|
|
|
|
section Support
|
|
|
|
section Support
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.SmulSupport.Support (α : Type _) [MulAction G α] (g : G) :=
|
|
|
|
def SmulSupport.Support (α : Type _) [MulAction G α] (g : G) :=
|
|
|
|
{x : α | g • x ≠ x}
|
|
|
|
{x : α | g • x ≠ x}
|
|
|
|
#align support Rubin.SmulSupport.Support
|
|
|
|
#align support Rubin.SmulSupport.Support
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.support_eq_not_fixed_by {g : G}:
|
|
|
|
theorem SmulSupport.support_eq_not_fixed_by {g : G}:
|
|
|
|
Rubin.SmulSupport.Support α g = (MulAction.fixedBy α g)ᶜ := by tauto
|
|
|
|
Rubin.SmulSupport.Support α g = (MulAction.fixedBy α g)ᶜ := by tauto
|
|
|
|
#align support_eq_not_fixed_by Rubin.SmulSupport.support_eq_not_fixed_by
|
|
|
|
#align support_eq_not_fixed_by Rubin.SmulSupport.support_eq_not_fixed_by
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.mem_support {x : α} {g : G} :
|
|
|
|
theorem SmulSupport.mem_support {x : α} {g : G} :
|
|
|
|
x ∈ Rubin.SmulSupport.Support α g ↔ g • x ≠ x := by tauto
|
|
|
|
x ∈ Rubin.SmulSupport.Support α g ↔ g • x ≠ x := by tauto
|
|
|
|
#align mem_support Rubin.SmulSupport.mem_support
|
|
|
|
#align mem_support Rubin.SmulSupport.mem_support
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.not_mem_support {x : α} {g : G} :
|
|
|
|
theorem SmulSupport.not_mem_support {x : α} {g : G} :
|
|
|
|
x ∉ Rubin.SmulSupport.Support α g ↔ g • x = x := by
|
|
|
|
x ∉ Rubin.SmulSupport.Support α g ↔ g • x = x := by
|
|
|
|
rw [Rubin.SmulSupport.mem_support, Classical.not_not]
|
|
|
|
rw [Rubin.SmulSupport.mem_support, Classical.not_not]
|
|
|
|
#align mem_not_support Rubin.SmulSupport.not_mem_support
|
|
|
|
#align mem_not_support Rubin.SmulSupport.not_mem_support
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.smul_mem_support {g : G} {x : α} :
|
|
|
|
theorem SmulSupport.smul_mem_support {g : G} {x : α} :
|
|
|
|
x ∈ Rubin.SmulSupport.Support α g → g • x ∈ Rubin.SmulSupport.Support α g := fun h =>
|
|
|
|
x ∈ Rubin.SmulSupport.Support α g → g • x ∈ Rubin.SmulSupport.Support α g := fun h =>
|
|
|
|
h ∘ smul_left_cancel g
|
|
|
|
h ∘ smul_left_cancel g
|
|
|
|
#align smul_in_support Rubin.SmulSupport.smul_mem_support
|
|
|
|
#align smul_in_support Rubin.SmulSupport.smul_mem_support
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.inv_smul_mem_support {g : G} {x : α} :
|
|
|
|
theorem SmulSupport.inv_smul_mem_support {g : G} {x : α} :
|
|
|
|
x ∈ Rubin.SmulSupport.Support α g → g⁻¹ • x ∈ Rubin.SmulSupport.Support α g := fun h k =>
|
|
|
|
x ∈ Rubin.SmulSupport.Support α g → g⁻¹ • x ∈ Rubin.SmulSupport.Support α g := fun h k =>
|
|
|
|
h (smul_inv_smul g x ▸ Rubin.GroupActionExt.smul_congr g k)
|
|
|
|
h (smul_inv_smul g x ▸ Rubin.GroupActionExt.smul_congr g k)
|
|
|
|
#align inv_smul_in_support Rubin.SmulSupport.inv_smul_mem_support
|
|
|
|
#align inv_smul_in_support Rubin.SmulSupport.inv_smul_mem_support
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.fixed_of_disjoint {g : G} {x : α} {U : Set α} :
|
|
|
|
theorem SmulSupport.fixed_of_disjoint {g : G} {x : α} {U : Set α} :
|
|
|
|
x ∈ U → Disjoint U (Rubin.SmulSupport.Support α g) → g • x = x :=
|
|
|
|
x ∈ U → Disjoint U (Rubin.SmulSupport.Support α g) → g • x = x :=
|
|
|
|
fun x_in_U disjoint_U_support =>
|
|
|
|
fun x_in_U disjoint_U_support =>
|
|
|
|
Rubin.SmulSupport.not_mem_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U)
|
|
|
|
Rubin.SmulSupport.not_mem_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U)
|
|
|
|
#align fixed_of_disjoint Rubin.SmulSupport.fixed_of_disjoint
|
|
|
|
#align fixed_of_disjoint Rubin.SmulSupport.fixed_of_disjoint
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.fixed_smulImage_in_support (g : G) {U : Set α} :
|
|
|
|
theorem SmulSupport.fixed_smulImage_in_support (g : G) {U : Set α} :
|
|
|
|
Rubin.SmulSupport.Support α g ⊆ U → g•''U = U :=
|
|
|
|
Rubin.SmulSupport.Support α g ⊆ U → g•''U = U :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro support_in_U
|
|
|
|
intro support_in_U
|
|
|
@ -387,13 +286,13 @@ theorem Rubin.SmulSupport.fixed_smulImage_in_support (g : G) {U : Set α} :
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, GroupActionExt.smul_eq_iff_inv_smul_eq.mp (not_mem_support.mp xfixed)]
|
|
|
|
rw [Rubin.SmulImage.mem_smulImage, GroupActionExt.smul_eq_iff_inv_smul_eq.mp (not_mem_support.mp xfixed)]
|
|
|
|
#align fixes_subset_within_support Rubin.SmulSupport.fixed_smulImage_in_support
|
|
|
|
#align fixes_subset_within_support Rubin.SmulSupport.fixed_smulImage_in_support
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.smulImage_subset_in_support (g : G) (U V : Set α) :
|
|
|
|
theorem SmulSupport.smulImage_subset_in_support (g : G) (U V : Set α) :
|
|
|
|
U ⊆ V → Rubin.SmulSupport.Support α g ⊆ V → g•''U ⊆ V := fun U_in_V support_in_V =>
|
|
|
|
U ⊆ V → Rubin.SmulSupport.Support α g ⊆ V → g•''U ⊆ V := fun U_in_V support_in_V =>
|
|
|
|
Rubin.SmulSupport.fixed_smulImage_in_support g support_in_V ▸
|
|
|
|
Rubin.SmulSupport.fixed_smulImage_in_support g support_in_V ▸
|
|
|
|
Rubin.SmulImage.smulImage_subset g U_in_V
|
|
|
|
Rubin.SmulImage.smulImage_subset g U_in_V
|
|
|
|
#align moves_subset_within_support Rubin.SmulSupport.smulImage_subset_in_support
|
|
|
|
#align moves_subset_within_support Rubin.SmulSupport.smulImage_subset_in_support
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.support_mul (g h : G) (α : Type _) [MulAction G α] :
|
|
|
|
theorem SmulSupport.support_mul (g h : G) (α : Type _) [MulAction G α] :
|
|
|
|
Rubin.SmulSupport.Support α (g * h) ⊆
|
|
|
|
Rubin.SmulSupport.Support α (g * h) ⊆
|
|
|
|
Rubin.SmulSupport.Support α g ∪ Rubin.SmulSupport.Support α h :=
|
|
|
|
Rubin.SmulSupport.Support α g ∪ Rubin.SmulSupport.Support α h :=
|
|
|
|
by
|
|
|
|
by
|
|
|
@ -407,7 +306,7 @@ theorem Rubin.SmulSupport.support_mul (g h : G) (α : Type _) [MulAction G α] :
|
|
|
|
((congr_arg ((· • ·) g) (not_mem_support.mp res.2)).trans <| not_mem_support.mp res.1))
|
|
|
|
((congr_arg ((· • ·) g) (not_mem_support.mp res.2)).trans <| not_mem_support.mp res.1))
|
|
|
|
#align support_mul Rubin.SmulSupport.support_mul
|
|
|
|
#align support_mul Rubin.SmulSupport.support_mul
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.support_conjugate (α : Type _) [MulAction G α] (g h : G) :
|
|
|
|
theorem SmulSupport.support_conjugate (α : Type _) [MulAction G α] (g h : G) :
|
|
|
|
Rubin.SmulSupport.Support α (h * g * h⁻¹) = h•''Rubin.SmulSupport.Support α g :=
|
|
|
|
Rubin.SmulSupport.Support α (h * g * h⁻¹) = h•''Rubin.SmulSupport.Support α g :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
ext x
|
|
|
|
ext x
|
|
|
@ -418,7 +317,7 @@ theorem Rubin.SmulSupport.support_conjugate (α : Type _) [MulAction G α] (g h
|
|
|
|
· intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg ((· • ·) h⁻¹) h2)
|
|
|
|
· intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg ((· • ·) h⁻¹) h2)
|
|
|
|
#align support_conjugate Rubin.SmulSupport.support_conjugate
|
|
|
|
#align support_conjugate Rubin.SmulSupport.support_conjugate
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.support_inv (α : Type _) [MulAction G α] (g : G) :
|
|
|
|
theorem SmulSupport.support_inv (α : Type _) [MulAction G α] (g : G) :
|
|
|
|
Rubin.SmulSupport.Support α g⁻¹ = Rubin.SmulSupport.Support α g :=
|
|
|
|
Rubin.SmulSupport.Support α g⁻¹ = Rubin.SmulSupport.Support α g :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
ext x
|
|
|
|
ext x
|
|
|
@ -428,7 +327,7 @@ theorem Rubin.SmulSupport.support_inv (α : Type _) [MulAction G α] (g : G) :
|
|
|
|
· intro h1; by_contra h2; exact h1 (GroupActionExt.smul_eq_iff_inv_smul_eq.mpr h2)
|
|
|
|
· intro h1; by_contra h2; exact h1 (GroupActionExt.smul_eq_iff_inv_smul_eq.mpr h2)
|
|
|
|
#align support_inv Rubin.SmulSupport.support_inv
|
|
|
|
#align support_inv Rubin.SmulSupport.support_inv
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.support_pow (α : Type _) [MulAction G α] (g : G) (j : ℕ) :
|
|
|
|
theorem SmulSupport.support_pow (α : Type _) [MulAction G α] (g : G) (j : ℕ) :
|
|
|
|
Rubin.SmulSupport.Support α (g ^ j) ⊆ Rubin.SmulSupport.Support α g :=
|
|
|
|
Rubin.SmulSupport.Support α (g ^ j) ⊆ Rubin.SmulSupport.Support α g :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro x xmoved
|
|
|
|
intro x xmoved
|
|
|
@ -444,7 +343,7 @@ theorem Rubin.SmulSupport.support_pow (α : Type _) [MulAction G α] (g : G) (j
|
|
|
|
exact j_ih
|
|
|
|
exact j_ih
|
|
|
|
#align support_pow Rubin.SmulSupport.support_pow
|
|
|
|
#align support_pow Rubin.SmulSupport.support_pow
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.support_comm (α : Type _) [MulAction G α] (g h : G) :
|
|
|
|
theorem SmulSupport.support_comm (α : Type _) [MulAction G α] (g h : G) :
|
|
|
|
Rubin.SmulSupport.Support α ⁅g, h⁆ ⊆
|
|
|
|
Rubin.SmulSupport.Support α ⁅g, h⁆ ⊆
|
|
|
|
Rubin.SmulSupport.Support α h ∪ (g•''Rubin.SmulSupport.Support α h) :=
|
|
|
|
Rubin.SmulSupport.Support α h ∪ (g•''Rubin.SmulSupport.Support α h) :=
|
|
|
|
by
|
|
|
|
by
|
|
|
@ -460,7 +359,7 @@ theorem Rubin.SmulSupport.support_comm (α : Type _) [MulAction G α] (g h : G)
|
|
|
|
· exact all_fixed (Or.inl xmoved)
|
|
|
|
· exact all_fixed (Or.inl xmoved)
|
|
|
|
#align support_comm Rubin.SmulSupport.support_comm
|
|
|
|
#align support_comm Rubin.SmulSupport.support_comm
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.SmulSupport.disjoint_support_comm (f g : G) {U : Set α} :
|
|
|
|
theorem SmulSupport.disjoint_support_comm (f g : G) {U : Set α} :
|
|
|
|
Rubin.SmulSupport.Support α f ⊆ U → Disjoint U (g•''U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x :=
|
|
|
|
Rubin.SmulSupport.Support α f ⊆ U → Disjoint U (g•''U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro support_in_U disjoint_U x x_in_U
|
|
|
|
intro support_in_U disjoint_U x x_in_U
|
|
|
@ -484,7 +383,7 @@ end Support
|
|
|
|
-- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup
|
|
|
|
-- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup
|
|
|
|
def rigidStabilizer' (G : Type _) [Group G] [MulAction G α] (U : Set α) : Set G :=
|
|
|
|
def rigidStabilizer' (G : Type _) [Group G] [MulAction G α] (U : Set α) : Set G :=
|
|
|
|
{g : G | ∀ x : α, g • x = x ∨ x ∈ U}
|
|
|
|
{g : G | ∀ x : α, g • x = x ∨ x ∈ U}
|
|
|
|
#align rigid_stabilizer' rigidStabilizer'
|
|
|
|
#align rigid_stabilizer' Rubin.rigidStabilizer'
|
|
|
|
|
|
|
|
|
|
|
|
/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » U) -/
|
|
|
|
/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » U) -/
|
|
|
|
def rigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgroup G
|
|
|
|
def rigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgroup G
|
|
|
@ -493,12 +392,12 @@ def rigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgr
|
|
|
|
mul_mem' ha hb x x_notin_U := by rw [mul_smul, hb x x_notin_U, ha x x_notin_U]
|
|
|
|
mul_mem' ha hb x x_notin_U := by rw [mul_smul, hb x x_notin_U, ha x x_notin_U]
|
|
|
|
inv_mem' hg x x_notin_U := Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U)
|
|
|
|
inv_mem' hg x x_notin_U := Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U)
|
|
|
|
one_mem' x _ := one_smul G x
|
|
|
|
one_mem' x _ := one_smul G x
|
|
|
|
#align rigid_stabilizer rigidStabilizer
|
|
|
|
#align rigid_stabilizer Rubin.rigidStabilizer
|
|
|
|
|
|
|
|
|
|
|
|
theorem rist_supported_in_set {g : G} {U : Set α} :
|
|
|
|
theorem rist_supported_in_set {g : G} {U : Set α} :
|
|
|
|
g ∈ rigidStabilizer G U → Rubin.SmulSupport.Support α g ⊆ U := fun h x x_in_support =>
|
|
|
|
g ∈ rigidStabilizer G U → Rubin.SmulSupport.Support α g ⊆ U := fun h x x_in_support =>
|
|
|
|
by_contradiction (x_in_support ∘ h x)
|
|
|
|
by_contradiction (x_in_support ∘ h x)
|
|
|
|
#align rist_supported_in_set rist_supported_in_set
|
|
|
|
#align rist_supported_in_set Rubin.rist_supported_in_set
|
|
|
|
|
|
|
|
|
|
|
|
theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) :
|
|
|
|
theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) :
|
|
|
|
(rigidStabilizer G V : Set G) ⊆ (rigidStabilizer G U : Set G) :=
|
|
|
|
(rigidStabilizer G V : Set G) ⊆ (rigidStabilizer G U : Set G) :=
|
|
|
@ -506,7 +405,7 @@ theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) :
|
|
|
|
intro g g_in_ristV x x_notin_U
|
|
|
|
intro g g_in_ristV x x_notin_U
|
|
|
|
have x_notin_V : x ∉ V := by intro x_in_V; exact x_notin_U (V_ss_U x_in_V)
|
|
|
|
have x_notin_V : x ∉ V := by intro x_in_V; exact x_notin_U (V_ss_U x_in_V)
|
|
|
|
exact g_in_ristV x x_notin_V
|
|
|
|
exact g_in_ristV x x_notin_V
|
|
|
|
#align rist_ss_rist rist_ss_rist
|
|
|
|
#align rist_ss_rist Rubin.rist_ss_rist
|
|
|
|
|
|
|
|
|
|
|
|
end Actions
|
|
|
|
end Actions
|
|
|
|
|
|
|
|
|
|
|
@ -515,23 +414,23 @@ section TopologicalActions
|
|
|
|
|
|
|
|
|
|
|
|
variable [TopologicalSpace α] [TopologicalSpace β]
|
|
|
|
variable [TopologicalSpace α] [TopologicalSpace β]
|
|
|
|
|
|
|
|
|
|
|
|
class Rubin.Topological.ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends
|
|
|
|
class Topological.ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends
|
|
|
|
MulAction G α where
|
|
|
|
MulAction G α where
|
|
|
|
continuous : ∀ g : G, Continuous (@SMul.smul G α _ g)
|
|
|
|
continuous : ∀ g : G, Continuous (@SMul.smul G α _ g)
|
|
|
|
#align continuous_mul_action Rubin.Topological.ContinuousMulAction
|
|
|
|
#align continuous_mul_action Rubin.Topological.ContinuousMulAction
|
|
|
|
|
|
|
|
|
|
|
|
structure Rubin.Topological.equivariant_homeomorph (G α β : Type _) [Group G] [TopologicalSpace α]
|
|
|
|
structure Topological.equivariant_homeomorph (G α β : Type _) [Group G] [TopologicalSpace α]
|
|
|
|
[TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where
|
|
|
|
[TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where
|
|
|
|
equivariant : GroupActionExt.is_equivariant G toFun
|
|
|
|
equivariant : GroupActionExt.is_equivariant G toFun
|
|
|
|
#align equivariant_homeomorph Rubin.Topological.equivariant_homeomorph
|
|
|
|
#align equivariant_homeomorph Rubin.Topological.equivariant_homeomorph
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Topological.equivariant_fun [MulAction G α] [MulAction G β]
|
|
|
|
theorem Topological.equivariant_fun [MulAction G α] [MulAction G β]
|
|
|
|
(h : Rubin.Topological.equivariant_homeomorph G α β) :
|
|
|
|
(h : Rubin.Topological.equivariant_homeomorph G α β) :
|
|
|
|
Rubin.GroupActionExt.is_equivariant G h.toFun :=
|
|
|
|
Rubin.GroupActionExt.is_equivariant G h.toFun :=
|
|
|
|
h.equivariant
|
|
|
|
h.equivariant
|
|
|
|
#align equivariant_fun Rubin.Topological.equivariant_fun
|
|
|
|
#align equivariant_fun Rubin.Topological.equivariant_fun
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Topological.equivariant_inv [MulAction G α] [MulAction G β]
|
|
|
|
theorem Topological.equivariant_inv [MulAction G α] [MulAction G β]
|
|
|
|
(h : Rubin.Topological.equivariant_homeomorph G α β) :
|
|
|
|
(h : Rubin.Topological.equivariant_homeomorph G α β) :
|
|
|
|
Rubin.GroupActionExt.is_equivariant G h.invFun :=
|
|
|
|
Rubin.GroupActionExt.is_equivariant G h.invFun :=
|
|
|
|
by
|
|
|
|
by
|
|
|
@ -544,14 +443,14 @@ theorem Rubin.Topological.equivariant_inv [MulAction G α] [MulAction G β]
|
|
|
|
|
|
|
|
|
|
|
|
variable [Rubin.Topological.ContinuousMulAction G α]
|
|
|
|
variable [Rubin.Topological.ContinuousMulAction G α]
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Topological.img_open_open (g : G) (U : Set α) (h : IsOpen U)
|
|
|
|
theorem Topological.img_open_open (g : G) (U : Set α) (h : IsOpen U)
|
|
|
|
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (g•''U) :=
|
|
|
|
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (g•''U) :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
rw [Rubin.SmulImage.smulImage_eq_inv_preimage]
|
|
|
|
rw [Rubin.SmulImage.smulImage_eq_inv_preimage]
|
|
|
|
exact Continuous.isOpen_preimage (Rubin.Topological.ContinuousMulAction.continuous g⁻¹) U h
|
|
|
|
exact Continuous.isOpen_preimage (Rubin.Topological.ContinuousMulAction.continuous g⁻¹) U h
|
|
|
|
#align img_open_open Rubin.Topological.img_open_open
|
|
|
|
#align img_open_open Rubin.Topological.img_open_open
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Topological.support_open (g : G) [TopologicalSpace α] [T2Space α]
|
|
|
|
theorem Topological.support_open (g : G) [TopologicalSpace α] [T2Space α]
|
|
|
|
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (Rubin.SmulSupport.Support α g) :=
|
|
|
|
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (Rubin.SmulSupport.Support α g) :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
apply isOpen_iff_forall_mem_open.mpr
|
|
|
|
apply isOpen_iff_forall_mem_open.mpr
|
|
|
@ -575,17 +474,17 @@ section FaithfulActions
|
|
|
|
|
|
|
|
|
|
|
|
variable [MulAction G α] [FaithfulSMul G α]
|
|
|
|
variable [MulAction G α] [FaithfulSMul G α]
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.faithful_moves_point₁ {g : G} (h2 : ∀ x : α, g • x = x) : g = 1 :=
|
|
|
|
theorem faithful_moves_point₁ {g : G} (h2 : ∀ x : α, g • x = x) : g = 1 :=
|
|
|
|
haveI h3 : ∀ x : α, g • x = (1 : G) • x := fun x => (h2 x).symm ▸ (one_smul G x).symm
|
|
|
|
haveI h3 : ∀ x : α, g • x = (1 : G) • x := fun x => (h2 x).symm ▸ (one_smul G x).symm
|
|
|
|
eq_of_smul_eq_smul h3
|
|
|
|
eq_of_smul_eq_smul h3
|
|
|
|
#align faithful_moves_point Rubin.faithful_moves_point₁
|
|
|
|
#align faithful_moves_point Rubin.faithful_moves_point₁
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.faithful_moves_point'₁ {g : G} (α : Type _) [MulAction G α] [FaithfulSMul G α] :
|
|
|
|
theorem faithful_moves_point'₁ {g : G} (α : Type _) [MulAction G α] [FaithfulSMul G α] :
|
|
|
|
g ≠ 1 → ∃ x : α, g • x ≠ x := fun k =>
|
|
|
|
g ≠ 1 → ∃ x : α, g • x ≠ x := fun k =>
|
|
|
|
by_contradiction fun h => k <| Rubin.faithful_moves_point₁ <| Classical.not_exists_not.mp h
|
|
|
|
by_contradiction fun h => k <| Rubin.faithful_moves_point₁ <| Classical.not_exists_not.mp h
|
|
|
|
#align faithful_moves_point' Rubin.faithful_moves_point'₁
|
|
|
|
#align faithful_moves_point' Rubin.faithful_moves_point'₁
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.faithful_rigid_stabilizer_moves_point {g : G} {U : Set α} :
|
|
|
|
theorem faithful_rigid_stabilizer_moves_point {g : G} {U : Set α} :
|
|
|
|
g ∈ rigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x :=
|
|
|
|
g ∈ rigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro g_rigid g_ne_one
|
|
|
|
intro g_rigid g_ne_one
|
|
|
@ -593,7 +492,7 @@ theorem Rubin.faithful_rigid_stabilizer_moves_point {g : G} {U : Set α} :
|
|
|
|
exact ⟨x, rist_supported_in_set g_rigid xmoved, xmoved⟩
|
|
|
|
exact ⟨x, rist_supported_in_set g_rigid xmoved, xmoved⟩
|
|
|
|
#align faithful_rist_moves_point Rubin.faithful_rigid_stabilizer_moves_point
|
|
|
|
#align faithful_rist_moves_point Rubin.faithful_rigid_stabilizer_moves_point
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.ne_one_support_nonempty {g : G} : g ≠ 1 → (Rubin.SmulSupport.Support α g).Nonempty :=
|
|
|
|
theorem ne_one_support_nonempty {g : G} : g ≠ 1 → (Rubin.SmulSupport.Support α g).Nonempty :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro h1
|
|
|
|
intro h1
|
|
|
|
cases' Rubin.faithful_moves_point'₁ α h1 with x h
|
|
|
|
cases' Rubin.faithful_moves_point'₁ α h1 with x h
|
|
|
@ -602,7 +501,7 @@ theorem Rubin.ne_one_support_nonempty {g : G} : g ≠ 1 → (Rubin.SmulSupport.S
|
|
|
|
#align ne_one_support_nempty Rubin.ne_one_support_nonempty
|
|
|
|
#align ne_one_support_nempty Rubin.ne_one_support_nonempty
|
|
|
|
|
|
|
|
|
|
|
|
-- FIXME: somehow clashes with another definition
|
|
|
|
-- FIXME: somehow clashes with another definition
|
|
|
|
theorem Rubin.disjoint_commute₁ {f g : G} :
|
|
|
|
theorem disjoint_commute₁ {f g : G} :
|
|
|
|
Disjoint (Rubin.SmulSupport.Support α f) (Rubin.SmulSupport.Support α g) → Commute f g :=
|
|
|
|
Disjoint (Rubin.SmulSupport.Support α f) (Rubin.SmulSupport.Support α g) → Commute f g :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro hdisjoint
|
|
|
|
intro hdisjoint
|
|
|
@ -638,15 +537,15 @@ section RubinActions
|
|
|
|
|
|
|
|
|
|
|
|
variable [TopologicalSpace α] [TopologicalSpace β]
|
|
|
|
variable [TopologicalSpace α] [TopologicalSpace β]
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.has_no_isolated_points (α : Type _) [TopologicalSpace α] :=
|
|
|
|
def has_no_isolated_points (α : Type _) [TopologicalSpace α] :=
|
|
|
|
∀ x : α, (nhdsWithin x ({x}ᶜ)) ≠ ⊥
|
|
|
|
∀ x : α, (nhdsWithin x ({x}ᶜ)) ≠ ⊥
|
|
|
|
#align has_no_isolated_points Rubin.has_no_isolated_points
|
|
|
|
#align has_no_isolated_points Rubin.has_no_isolated_points
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.is_locally_dense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
|
|
|
|
def is_locally_dense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
|
|
|
|
∀ U : Set α, ∀ p ∈ U, p ∈ interior (closure (MulAction.orbit (rigidStabilizer G U) p))
|
|
|
|
∀ U : Set α, ∀ p ∈ U, p ∈ interior (closure (MulAction.orbit (rigidStabilizer G U) p))
|
|
|
|
#align is_locally_dense Rubin.is_locally_dense
|
|
|
|
#align is_locally_dense Rubin.is_locally_dense
|
|
|
|
|
|
|
|
|
|
|
|
structure Rubin.RubinAction (G α : Type _) extends Group G, TopologicalSpace α, MulAction G α,
|
|
|
|
structure RubinAction (G α : Type _) extends Group G, TopologicalSpace α, MulAction G α,
|
|
|
|
FaithfulSMul G α where
|
|
|
|
FaithfulSMul G α where
|
|
|
|
locally_compact : LocallyCompactSpace α
|
|
|
|
locally_compact : LocallyCompactSpace α
|
|
|
|
hausdorff : T2Space α
|
|
|
|
hausdorff : T2Space α
|
|
|
@ -661,11 +560,11 @@ section Rubin.Period.period
|
|
|
|
|
|
|
|
|
|
|
|
variable [MulAction G α]
|
|
|
|
variable [MulAction G α]
|
|
|
|
|
|
|
|
|
|
|
|
noncomputable def Rubin.Period.period (p : α) (g : G) : ℕ :=
|
|
|
|
noncomputable def Period.period (p : α) (g : G) : ℕ :=
|
|
|
|
sInf {n : ℕ | n > 0 ∧ g ^ n • p = p}
|
|
|
|
sInf {n : ℕ | n > 0 ∧ g ^ n • p = p}
|
|
|
|
#align period Rubin.Period.period
|
|
|
|
#align period Rubin.Period.period
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Period.period_le_fix {p : α} {g : G} {m : ℕ} (m_pos : m > 0)
|
|
|
|
theorem Period.period_le_fix {p : α} {g : G} {m : ℕ} (m_pos : m > 0)
|
|
|
|
(gmp_eq_p : g ^ m • p = p) : 0 < Rubin.Period.period p g ∧ Rubin.Period.period p g ≤ m :=
|
|
|
|
(gmp_eq_p : g ^ m • p = p) : 0 < Rubin.Period.period p g ∧ Rubin.Period.period p g ≤ m :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
constructor
|
|
|
|
constructor
|
|
|
@ -675,7 +574,7 @@ theorem Rubin.Period.period_le_fix {p : α} {g : G} {m : ℕ} (m_pos : m > 0)
|
|
|
|
exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩
|
|
|
|
exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩
|
|
|
|
#align period_le_fix Rubin.Period.period_le_fix
|
|
|
|
#align period_le_fix Rubin.Period.period_le_fix
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Period.notfix_le_period {p : α} {g : G} {n : ℕ} (n_pos : n > 0)
|
|
|
|
theorem Period.notfix_le_period {p : α} {g : G} {n : ℕ} (n_pos : n > 0)
|
|
|
|
(period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : ℕ, 0 < i → i < n → g ^ i • p ≠ p) :
|
|
|
|
(period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : ℕ, 0 < i → i < n → g ^ i • p ≠ p) :
|
|
|
|
n ≤ Rubin.Period.period p g := by
|
|
|
|
n ≤ Rubin.Period.period p g := by
|
|
|
|
by_contra period_le
|
|
|
|
by_contra period_le
|
|
|
@ -684,14 +583,14 @@ theorem Rubin.Period.notfix_le_period {p : α} {g : G} {n : ℕ} (n_pos : n > 0)
|
|
|
|
(Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2
|
|
|
|
(Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2
|
|
|
|
#align notfix_le_period Rubin.Period.notfix_le_period
|
|
|
|
#align notfix_le_period Rubin.Period.notfix_le_period
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Period.notfix_le_period' {p : α} {g : G} {n : ℕ} (n_pos : n > 0)
|
|
|
|
theorem Period.notfix_le_period' {p : α} {g : G} {n : ℕ} (n_pos : n > 0)
|
|
|
|
(period_pos : Rubin.Period.period p g > 0)
|
|
|
|
(period_pos : Rubin.Period.period p g > 0)
|
|
|
|
(pmoves : ∀ i : Fin n, 0 < (i : ℕ) → g ^ (i : ℕ) • p ≠ p) : n ≤ Rubin.Period.period p g :=
|
|
|
|
(pmoves : ∀ i : Fin n, 0 < (i : ℕ) → g ^ (i : ℕ) • p ≠ p) : n ≤ Rubin.Period.period p g :=
|
|
|
|
Rubin.Period.notfix_le_period n_pos period_pos fun (i : ℕ) (i_pos : 0 < i) (i_lt_n : i < n) =>
|
|
|
|
Rubin.Period.notfix_le_period n_pos period_pos fun (i : ℕ) (i_pos : 0 < i) (i_lt_n : i < n) =>
|
|
|
|
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
|
|
|
|
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
|
|
|
|
#align notfix_le_period' Rubin.Period.notfix_le_period'
|
|
|
|
#align notfix_le_period' Rubin.Period.notfix_le_period'
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Period.period_neutral_eq_one (p : α) : Rubin.Period.period p (1 : G) = 1 :=
|
|
|
|
theorem Period.period_neutral_eq_one (p : α) : Rubin.Period.period p (1 : G) = 1 :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 :=
|
|
|
|
have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 :=
|
|
|
|
Rubin.Period.period_le_fix (by norm_num : 1 > 0)
|
|
|
|
Rubin.Period.period_le_fix (by norm_num : 1 > 0)
|
|
|
@ -700,12 +599,12 @@ theorem Rubin.Period.period_neutral_eq_one (p : α) : Rubin.Period.period p (1 :
|
|
|
|
linarith
|
|
|
|
linarith
|
|
|
|
#align period_neutral_eq_one Rubin.Period.period_neutral_eq_one
|
|
|
|
#align period_neutral_eq_one Rubin.Period.period_neutral_eq_one
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.Period.periods (U : Set α) (H : Subgroup G) : Set ℕ :=
|
|
|
|
def Period.periods (U : Set α) (H : Subgroup G) : Set ℕ :=
|
|
|
|
{n : ℕ | ∃ (p : α) (g : H), p ∈ U ∧ Rubin.Period.period (p : α) (g : G) = n}
|
|
|
|
{n : ℕ | ∃ (p : α) (g : H), p ∈ U ∧ Rubin.Period.period (p : α) (g : G) = n}
|
|
|
|
#align periods Rubin.Period.periods
|
|
|
|
#align periods Rubin.Period.periods
|
|
|
|
|
|
|
|
|
|
|
|
-- TODO: split into multiple lemmas
|
|
|
|
-- TODO: split into multiple lemmas
|
|
|
|
theorem Rubin.Period.periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {H : Subgroup G}
|
|
|
|
theorem Period.periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {H : Subgroup G}
|
|
|
|
(exp_ne_zero : Monoid.exponent H ≠ 0) :
|
|
|
|
(exp_ne_zero : Monoid.exponent H ≠ 0) :
|
|
|
|
(Rubin.Period.periods U H).Nonempty ∧
|
|
|
|
(Rubin.Period.periods U H).Nonempty ∧
|
|
|
|
BddAbove (Rubin.Period.periods U H) ∧
|
|
|
|
BddAbove (Rubin.Period.periods U H) ∧
|
|
|
@ -731,7 +630,7 @@ theorem Rubin.Period.periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {
|
|
|
|
exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
|
|
|
|
exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
|
|
|
|
#align period_lemma Rubin.Period.periods_lemmas
|
|
|
|
#align period_lemma Rubin.Period.periods_lemmas
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Period.period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G}
|
|
|
|
theorem Period.period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G}
|
|
|
|
(exp_ne_zero : Monoid.exponent H ≠ 0) :
|
|
|
|
(exp_ne_zero : Monoid.exponent H ≠ 0) :
|
|
|
|
∃ (p : α) (g : H) (n : ℕ),
|
|
|
|
∃ (p : α) (g : H) (n : ℕ),
|
|
|
|
p ∈ U ∧ n > 0 ∧ Rubin.Period.period (p : α) (g : G) = n ∧ n = sSup (Rubin.Period.periods U H) :=
|
|
|
|
p ∈ U ∧ n > 0 ∧ Rubin.Period.period (p : α) (g : G) = n ∧ n = sSup (Rubin.Period.periods U H) :=
|
|
|
@ -751,7 +650,7 @@ theorem Rubin.Period.period_from_exponent (U : Set α) (U_nonempty : U.Nonempty)
|
|
|
|
⟩
|
|
|
|
⟩
|
|
|
|
#align period_from_exponent Rubin.Period.period_from_exponent
|
|
|
|
#align period_from_exponent Rubin.Period.period_from_exponent
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Period.zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
|
|
|
|
theorem Period.zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
|
|
|
|
{H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) :
|
|
|
|
{H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) :
|
|
|
|
∀ (p : U) (g : H),
|
|
|
|
∀ (p : U) (g : H),
|
|
|
|
0 < Rubin.Period.period (p : α) (g : G) ∧
|
|
|
|
0 < Rubin.Period.period (p : α) (g : G) ∧
|
|
|
@ -768,7 +667,7 @@ theorem Rubin.Period.zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.
|
|
|
|
le_csSup periods_bounded period_in_periods⟩
|
|
|
|
le_csSup periods_bounded period_in_periods⟩
|
|
|
|
#align zero_lt_period_le_Sup_periods Rubin.Period.zero_lt_period_le_Sup_periods
|
|
|
|
#align zero_lt_period_le_Sup_periods Rubin.Period.zero_lt_period_le_Sup_periods
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.Period.pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p :=
|
|
|
|
theorem Period.pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
cases eq_zero_or_neZero (Rubin.Period.period p g) with
|
|
|
|
cases eq_zero_or_neZero (Rubin.Period.period p g) with
|
|
|
|
| inl h => rw [h]; simp
|
|
|
|
| inl h => rw [h]; simp
|
|
|
@ -786,7 +685,7 @@ section AlgebraicDisjointness
|
|
|
|
|
|
|
|
|
|
|
|
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] [FaithfulSMul G α]
|
|
|
|
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] [FaithfulSMul G α]
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.Disjointness.IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α]
|
|
|
|
def Disjointness.IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α]
|
|
|
|
[MulAction G α] :=
|
|
|
|
[MulAction G α] :=
|
|
|
|
∀ U : Set α, IsOpen U → Set.Nonempty U → rigidStabilizer G U ≠ ⊥
|
|
|
|
∀ U : Set α, IsOpen U → Set.Nonempty U → rigidStabilizer G U ≠ ⊥
|
|
|
|
#align is_locally_moving Rubin.Disjointness.IsLocallyMoving
|
|
|
|
#align is_locally_moving Rubin.Disjointness.IsLocallyMoving
|
|
|
@ -1059,29 +958,29 @@ section Rubin.RegularSupport.RegularSupport
|
|
|
|
|
|
|
|
|
|
|
|
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α]
|
|
|
|
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α]
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.RegularSupport.InteriorClosure (U : Set α) :=
|
|
|
|
def RegularSupport.InteriorClosure (U : Set α) :=
|
|
|
|
interior (closure U)
|
|
|
|
interior (closure U)
|
|
|
|
#align interior_closure Rubin.RegularSupport.InteriorClosure
|
|
|
|
#align interior_closure Rubin.RegularSupport.InteriorClosure
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.RegularSupport.is_open_interiorClosure (U : Set α) :
|
|
|
|
theorem RegularSupport.is_open_interiorClosure (U : Set α) :
|
|
|
|
IsOpen (Rubin.RegularSupport.InteriorClosure U) :=
|
|
|
|
IsOpen (Rubin.RegularSupport.InteriorClosure U) :=
|
|
|
|
isOpen_interior
|
|
|
|
isOpen_interior
|
|
|
|
#align is_open_interior_closure Rubin.RegularSupport.is_open_interiorClosure
|
|
|
|
#align is_open_interior_closure Rubin.RegularSupport.is_open_interiorClosure
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.RegularSupport.interiorClosure_mono {U V : Set α} :
|
|
|
|
theorem RegularSupport.interiorClosure_mono {U V : Set α} :
|
|
|
|
U ⊆ V → Rubin.RegularSupport.InteriorClosure U ⊆ Rubin.RegularSupport.InteriorClosure V :=
|
|
|
|
U ⊆ V → Rubin.RegularSupport.InteriorClosure U ⊆ Rubin.RegularSupport.InteriorClosure V :=
|
|
|
|
interior_mono ∘ closure_mono
|
|
|
|
interior_mono ∘ closure_mono
|
|
|
|
#align interior_closure_mono Rubin.RegularSupport.interiorClosure_mono
|
|
|
|
#align interior_closure_mono Rubin.RegularSupport.interiorClosure_mono
|
|
|
|
|
|
|
|
|
|
|
|
def Set.is_regular_open (U : Set α) :=
|
|
|
|
def is_regular_open (U : Set α) :=
|
|
|
|
Rubin.RegularSupport.InteriorClosure U = U
|
|
|
|
Rubin.RegularSupport.InteriorClosure U = U
|
|
|
|
#align set.is_regular_open Set.is_regular_open
|
|
|
|
#align set.is_regular_open Rubin.is_regular_open
|
|
|
|
|
|
|
|
|
|
|
|
theorem Set.is_regular_def (U : Set α) :
|
|
|
|
theorem is_regular_def (U : Set α) :
|
|
|
|
U.is_regular_open ↔ Rubin.RegularSupport.InteriorClosure U = U := by rfl
|
|
|
|
is_regular_open U ↔ Rubin.RegularSupport.InteriorClosure U = U := by rfl
|
|
|
|
#align set.is_regular_def Set.is_regular_def
|
|
|
|
#align set.is_regular_def Rubin.is_regular_def
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.RegularSupport.IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆ interior (closure U) :=
|
|
|
|
theorem RegularSupport.IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆ interior (closure U) :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
intro U_open x x_in_U
|
|
|
|
intro U_open x x_in_U
|
|
|
|
apply interior_mono subset_closure
|
|
|
|
apply interior_mono subset_closure
|
|
|
@ -1089,43 +988,43 @@ theorem Rubin.RegularSupport.IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆
|
|
|
|
exact x_in_U
|
|
|
|
exact x_in_U
|
|
|
|
#align is_open.in_closure Rubin.RegularSupport.IsOpen.in_closure
|
|
|
|
#align is_open.in_closure Rubin.RegularSupport.IsOpen.in_closure
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.RegularSupport.IsOpen.interiorClosure_subset {U : Set α} :
|
|
|
|
theorem RegularSupport.IsOpen.interiorClosure_subset {U : Set α} :
|
|
|
|
IsOpen U → U ⊆ Rubin.RegularSupport.InteriorClosure U := fun h =>
|
|
|
|
IsOpen U → U ⊆ Rubin.RegularSupport.InteriorClosure U := fun h =>
|
|
|
|
(subset_interior_iff_isOpen.mpr h).trans (interior_mono subset_closure)
|
|
|
|
(subset_interior_iff_isOpen.mpr h).trans (interior_mono subset_closure)
|
|
|
|
#align is_open.interior_closure_subset Rubin.RegularSupport.IsOpen.interiorClosure_subset
|
|
|
|
#align is_open.interior_closure_subset Rubin.RegularSupport.IsOpen.interiorClosure_subset
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.RegularSupport.regular_interior_closure (U : Set α) :
|
|
|
|
theorem RegularSupport.regular_interior_closure (U : Set α) :
|
|
|
|
(Rubin.RegularSupport.InteriorClosure U).is_regular_open :=
|
|
|
|
is_regular_open (Rubin.RegularSupport.InteriorClosure U) :=
|
|
|
|
by
|
|
|
|
by
|
|
|
|
rw [Set.is_regular_def]
|
|
|
|
rw [is_regular_def]
|
|
|
|
apply Set.Subset.antisymm
|
|
|
|
apply Set.Subset.antisymm
|
|
|
|
exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure))
|
|
|
|
exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure))
|
|
|
|
exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure)
|
|
|
|
exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure)
|
|
|
|
#align regular_interior_closure Rubin.RegularSupport.regular_interior_closure
|
|
|
|
#align regular_interior_closure Rubin.RegularSupport.regular_interior_closure
|
|
|
|
|
|
|
|
|
|
|
|
def Rubin.RegularSupport.RegularSupport (α : Type _) [TopologicalSpace α] [MulAction G α] (g : G) :=
|
|
|
|
def RegularSupport.RegularSupport (α : Type _) [TopologicalSpace α] [MulAction G α] (g : G) :=
|
|
|
|
Rubin.RegularSupport.InteriorClosure (Rubin.SmulSupport.Support α g)
|
|
|
|
Rubin.RegularSupport.InteriorClosure (Rubin.SmulSupport.Support α g)
|
|
|
|
#align regular_support Rubin.RegularSupport.RegularSupport
|
|
|
|
#align regular_support Rubin.RegularSupport.RegularSupport
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.RegularSupport.regularSupport_regular {g : G} :
|
|
|
|
theorem RegularSupport.regularSupport_regular {g : G} :
|
|
|
|
(Rubin.RegularSupport.RegularSupport α g).is_regular_open :=
|
|
|
|
is_regular_open (Rubin.RegularSupport.RegularSupport α g) :=
|
|
|
|
Rubin.RegularSupport.regular_interior_closure _
|
|
|
|
Rubin.RegularSupport.regular_interior_closure _
|
|
|
|
#align regular_regular_support Rubin.RegularSupport.regularSupport_regular
|
|
|
|
#align regular_regular_support Rubin.RegularSupport.regularSupport_regular
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.RegularSupport.support_subset_regularSupport [T2Space α] (g : G) :
|
|
|
|
theorem RegularSupport.support_subset_regularSupport [T2Space α] (g : G) :
|
|
|
|
Rubin.SmulSupport.Support α g ⊆ Rubin.RegularSupport.RegularSupport α g :=
|
|
|
|
Rubin.SmulSupport.Support α g ⊆ Rubin.RegularSupport.RegularSupport α g :=
|
|
|
|
Rubin.RegularSupport.IsOpen.interiorClosure_subset (Rubin.Topological.support_open g)
|
|
|
|
Rubin.RegularSupport.IsOpen.interiorClosure_subset (Rubin.Topological.support_open g)
|
|
|
|
#align support_in_regular_support Rubin.RegularSupport.support_subset_regularSupport
|
|
|
|
#align support_in_regular_support Rubin.RegularSupport.support_subset_regularSupport
|
|
|
|
|
|
|
|
|
|
|
|
theorem Rubin.RegularSupport.mem_regularSupport (g : G) (U : Set α) :
|
|
|
|
theorem RegularSupport.mem_regularSupport (g : G) (U : Set α) :
|
|
|
|
U.is_regular_open → g ∈ rigidStabilizer G U → Rubin.RegularSupport.RegularSupport α g ⊆ U :=
|
|
|
|
is_regular_open U → g ∈ rigidStabilizer G U → Rubin.RegularSupport.RegularSupport α g ⊆ U :=
|
|
|
|
fun U_ro g_moves =>
|
|
|
|
fun U_ro g_moves =>
|
|
|
|
(Set.is_regular_def _).mp U_ro ▸
|
|
|
|
(is_regular_def _).mp U_ro ▸
|
|
|
|
Rubin.RegularSupport.interiorClosure_mono (rist_supported_in_set g_moves)
|
|
|
|
Rubin.RegularSupport.interiorClosure_mono (rist_supported_in_set g_moves)
|
|
|
|
#align mem_regular_support Rubin.RegularSupport.mem_regularSupport
|
|
|
|
#align mem_regular_support Rubin.RegularSupport.mem_regularSupport
|
|
|
|
|
|
|
|
|
|
|
|
-- FIXME: Weird naming?
|
|
|
|
-- FIXME: Weird naming?
|
|
|
|
def Rubin.RegularSupport.AlgebraicCentralizer (f : G) : Set G :=
|
|
|
|
def RegularSupport.AlgebraicCentralizer (f : G) : Set G :=
|
|
|
|
{h | ∃ g, h = g ^ 12 ∧ Rubin.is_algebraically_disjoint f g}
|
|
|
|
{h | ∃ g, h = g ^ 12 ∧ Rubin.is_algebraically_disjoint f g}
|
|
|
|
#align algebraic_centralizer Rubin.RegularSupport.AlgebraicCentralizer
|
|
|
|
#align algebraic_centralizer Rubin.RegularSupport.AlgebraicCentralizer
|
|
|
|
|
|
|
|
|
|
|
@ -1218,3 +1117,5 @@ end Rubin.RegularSupport.RegularSupport
|
|
|
|
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
|
|
|
|
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
|
|
|
|
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
|
|
|
|
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
|
|
|
|
end Rubin
|
|
|
|
end Rubin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end Rubin
|
|
|
|