Compare commits

...

2 Commits

@ -24,12 +24,10 @@ import Rubin.SmulImage
import Rubin.Support
import Rubin.Topology
import Rubin.RigidStabilizer
-- import Rubin.RigidStabilizerBasis
import Rubin.Period
import Rubin.AlgebraicDisjointness
import Rubin.RegularSupport
import Rubin.RegularSupportBasis
import Rubin.HomeoGroup
import Rubin.Filter
#align_import rubin
@ -37,33 +35,54 @@ import Rubin.Filter
namespace Rubin
open Rubin.Tactic
-- TODO: find a home
theorem equiv_congr_ne {ι ι' : Type _} (e : ιι') {x y : ι} : x ≠ y → e x ≠ e y :=
by
intro x_ne_y
by_contra h
apply x_ne_y
convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply]
#align equiv.congr_ne Rubin.equiv_congr_ne
----------------------------------------------------------------
section Rubin
----------------------------------------------------------------
section RubinActions
structure RubinAction (G α : Type _) extends
Group G,
TopologicalSpace α,
MulAction G α,
FaithfulSMul G α
where
-- TODO: debate whether having this structure is relevant or not,
-- since the instance inference engine doesn't play well with it.
-- One alternative would be to lay out all of the properties as-is (without their class wrappers),
-- then provide ways to reconstruct them in instances.
structure RubinAction (G α : Type _) where
group : Group G
action : MulAction G α
topology : TopologicalSpace α
faithful : FaithfulSMul G α
locally_compact : LocallyCompactSpace α
hausdorff : T2Space α
no_isolated_points : HasNoIsolatedPoints α
locallyDense : LocallyDense G α
locally_dense : LocallyDense G α
#align rubin_action Rubin.RubinAction
/--
Constructs a RubinAction from ambient instances.
If needed, missing instances can be passed as named parameters.
--/
def RubinAction.mk' (G α : Type _)
[group : Group G] [topology : TopologicalSpace α] [hausdorff : T2Space α] [action : MulAction G α]
[faithful : FaithfulSMul G α] [locally_compact : LocallyCompactSpace α]
[no_isolated_points : HasNoIsolatedPoints α] [locally_dense : LocallyDense G α] :
RubinAction G α := ⟨
group,
action,
topology,
faithful,
locally_compact,
hausdorff,
no_isolated_points,
locally_dense
variable {G α : Type _}
instance RubinAction.instGroup (act : RubinAction G α) : Group G := act.group
instance RubinAction.instFaithful (act : RubinAction G α) : @FaithfulSMul G α (@MulAction.toSMul G α act.group.toMonoid act.action) := act.faithful
instance RubinAction.topologicalSpace (act : RubinAction G α) : TopologicalSpace α := act.topology
end RubinActions
section AlgebraicDisjointness
@ -444,7 +463,6 @@ by
apply ge_antisymm
{
apply Period.notfix_le_period'
· exact n_pos
· apply Period.period_pos'
· exact Set.nonempty_of_mem p_in_U
· exact exp_ne_zero
@ -2082,8 +2100,7 @@ by
exact RubinSpace.lim_mk α F
theorem RubinSpace.lim_continuous : Continuous (RubinSpace.lim (G := G) (α := α)) := by
-- TODO: rename to continuous_iff when upgrading mathlib
apply (RegularSupportBasis.isBasis G α).continuous
rw [(RegularSupportBasis.isBasis G α).continuous_iff]
intro S S_in_basis
apply TopologicalSpace.isOpen_generateFrom_of_mem
rw [RubinFilterBasis.mem_iff]
@ -2317,6 +2334,7 @@ theorem RubinFilter.mul_smul (g h : G) (F : RubinFilter G) : (F.smul g).smul h =
rw [Filter.map_map, <-MulAut.coe_mul]
rw [Filter.InBasis.map_basis_toOrderIsoSet _ F.filter.in_basis]
-- Note: awfully slow to compile (since it isn't noncomputable, it gets compiled down to IR)
def RubinSpace.smul (Q : RubinSpace G) (g : G) : RubinSpace G :=
Quotient.map (fun F => F.smul g) (fun _ _ F_eqv => RubinFilter.smul_eqv_of_eqv g F_eqv) Q
@ -2344,9 +2362,9 @@ instance : MulAction G (RubinSpace G) where
theorem RubinSpace.smul_def (g : G) (Q : RubinSpace G) : g • Q = Q.smul g := rfl
noncomputable def rubin' : EquivariantHomeomorph G (RubinSpace G) α where
noncomputable def RubinSpace.equivariantHomeomorph : EquivariantHomeomorph G (RubinSpace G) α where
toHomeomorph := RubinSpace.homeomorph (G := G) α
equivariant := by
toFun_equivariant' := by
intro g Q
simp [RubinSpace.homeomorph]
rw [RubinSpace.smul_def]
@ -2356,20 +2374,18 @@ noncomputable def rubin' : EquivariantHomeomorph G (RubinSpace G) α where
end Equivariant
-- theorem rubin' (hα : RubinAction G α) : EquivariantHomeomorph G α (RubinSpace G) where
-- toFun := fun x => ⟦⟧
-- invFun := fun S => sorry
/-
variable {β : Type _}
variable [TopologicalSpace β] [MulAction G β] [ContinuousConstSMul G β]
theorem rubin (hα : RubinAction G α) (hβ : RubinAction G β) : EquivariantHomeomorph G α β := by
-- by composing rubin' hα
sorry
-/
variable (G : Type _)
variable [Group G] [Nontrivial G]
variable (α : Type _) [TopologicalSpace α] [T2Space α] [LocallyCompactSpace α] [HasNoIsolatedPoints α]
variable [MulAction G α] [FaithfulSMul G α] [ContinuousConstSMul G α] [LocallyDense G α]
variable (β : Type _) [TopologicalSpace β] [T2Space β] [LocallyCompactSpace β] [HasNoIsolatedPoints β]
variable [MulAction G β] [FaithfulSMul G β] [ContinuousConstSMul G β] [LocallyDense G β]
noncomputable def rubin : EquivariantHomeomorph G α β :=
let α_nonempty : Nonempty α := by rwa [LocallyMoving.nonempty_iff_nontrivial G]
let β_nonempty : Nonempty β := by rwa [LocallyMoving.nonempty_iff_nontrivial G]
(RubinSpace.equivariantHomeomorph (G := G) (α := α)).inv.trans
(RubinSpace.equivariantHomeomorph (G := G) (α := β))
end Rubin

@ -1,257 +0,0 @@
import Mathlib.Logic.Equiv.Defs
import Mathlib.Topology.Basic
import Mathlib.Topology.Homeomorph
import Mathlib.Topology.Algebra.ConstMulAction
import Rubin.LocallyDense
import Rubin.Topology
import Rubin.Support
import Rubin.RegularSupport
structure HomeoGroup (α : Type _) [TopologicalSpace α] extends Homeomorph α α
variable {α : Type _}
variable [TopologicalSpace α]
def HomeoGroup.coe : HomeoGroup α -> Homeomorph α α := HomeoGroup.toHomeomorph
def HomeoGroup.from : Homeomorph α α -> HomeoGroup α := HomeoGroup.mk
instance homeoGroup_coe : Coe (HomeoGroup α) (Homeomorph α α) where
coe := HomeoGroup.coe
instance homeoGroup_coe₂ : Coe (Homeomorph α α) (HomeoGroup α) where
coe := HomeoGroup.from
def HomeoGroup.toPerm : HomeoGroup α → Equiv.Perm α := fun g => g.coe.toEquiv
instance homeoGroup_coe_perm : Coe (HomeoGroup α) (Equiv.Perm α) where
coe := HomeoGroup.toPerm
@[simp]
theorem HomeoGroup.toPerm_def (g : HomeoGroup α) : g.coe.toEquiv = (g : Equiv.Perm α) := rfl
@[simp]
theorem HomeoGroup.mk_coe (g : HomeoGroup α) : HomeoGroup.mk (g.coe) = g := rfl
@[simp]
theorem HomeoGroup.eq_iff_coe_eq {f g : HomeoGroup α} : f.coe = g.coe ↔ f = g := by
constructor
{
intro f_eq_g
rw [<-HomeoGroup.mk_coe f]
rw [f_eq_g]
simp
}
{
intro f_eq_g
unfold HomeoGroup.coe
rw [f_eq_g]
}
@[simp]
theorem HomeoGroup.from_toHomeomorph (m : Homeomorph α α) : (HomeoGroup.from m).toHomeomorph = m := rfl
instance homeoGroup_one : One (HomeoGroup α) where
one := HomeoGroup.from (Homeomorph.refl α)
theorem HomeoGroup.one_def : (1 : HomeoGroup α) = (Homeomorph.refl α : HomeoGroup α) := rfl
instance homeoGroup_inv : Inv (HomeoGroup α) where
inv := fun g => HomeoGroup.from (g.coe.symm)
@[simp]
theorem HomeoGroup.inv_def (g : HomeoGroup α) : (Homeomorph.symm g.coe : HomeoGroup α) = g⁻¹ := rfl
theorem HomeoGroup.coe_inv {g : HomeoGroup α} : HomeoGroup.coe (g⁻¹) = (HomeoGroup.coe g).symm := rfl
instance homeoGroup_mul : Mul (HomeoGroup α) where
mul := fun a b => ⟨b.toHomeomorph.trans a.toHomeomorph⟩
theorem HomeoGroup.coe_mul {f g : HomeoGroup α} : HomeoGroup.coe (f * g) = (HomeoGroup.coe g).trans (HomeoGroup.coe f) := rfl
@[simp]
theorem HomeoGroup.mul_def (f g : HomeoGroup α) : HomeoGroup.from ((HomeoGroup.coe g).trans (HomeoGroup.coe f)) = f * g := rfl
instance homeoGroup_group : Group (HomeoGroup α) where
mul_assoc := by
intro a b c
rw [<-HomeoGroup.eq_iff_coe_eq]
repeat rw [HomeoGroup_coe_mul]
rfl
mul_one := by
intro a
rw [<-HomeoGroup.eq_iff_coe_eq]
rw [HomeoGroup.coe_mul]
rfl
one_mul := by
intro a
rw [<-HomeoGroup.eq_iff_coe_eq]
rw [HomeoGroup.coe_mul]
rfl
mul_left_inv := by
intro a
rw [<-HomeoGroup.eq_iff_coe_eq]
rw [HomeoGroup.coe_mul]
rw [HomeoGroup.coe_inv]
simp
rfl
/--
The HomeoGroup trivially has a continuous and faithful `MulAction` on the underlying topology `α`.
--/
instance homeoGroup_smul₁ : SMul (HomeoGroup α) α where
smul := fun g x => g.toFun x
@[simp]
theorem HomeoGroup.smul₁_def (f : HomeoGroup α) (x : α) : f.toFun x = f • x := rfl
@[simp]
theorem HomeoGroup.smul₁_def' (f : HomeoGroup α) (x : α) : f.toHomeomorph x = f • x := rfl
@[simp]
theorem HomeoGroup.coe_toFun_eq_smul₁ (f : HomeoGroup α) (x : α) : FunLike.coe (HomeoGroup.coe f) x = f • x := rfl
instance homeoGroup_mulAction₁ : MulAction (HomeoGroup α) α where
one_smul := by
intro x
rfl
mul_smul := by
intro f g x
rfl
instance homeoGroup_mulAction₁_continuous : ContinuousConstSMul (HomeoGroup α) α where
continuous_const_smul := by
intro h
constructor
intro S S_open
conv => {
congr; ext
congr; ext
rw [<-HomeoGroup.smul₁_def']
}
simp only [Homeomorph.isOpen_preimage]
exact S_open
instance homeoGroup_mulAction₁_faithful : FaithfulSMul (HomeoGroup α) α where
eq_of_smul_eq_smul := by
intro f g hyp
rw [<-HomeoGroup.eq_iff_coe_eq]
ext x
simp
exact hyp x
theorem HomeoGroup.smulImage_eq_image (g : HomeoGroup α) (S : Set α) :
g •'' S = ⇑g.toHomeomorph '' S := rfl
section FromContinuousConstSMul
variable {G : Type _} [Group G]
variable [MulAction G α] [ContinuousConstSMul G α]
/--
`fromContinuous` is a structure-preserving transformation from a continuous `MulAction` to a `HomeoGroup`
--/
def HomeoGroup.fromContinuous (α : Type _) [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α]
(g : G) : HomeoGroup α :=
HomeoGroup.from (Homeomorph.smul g)
@[simp]
theorem HomeoGroup.fromContinuous_def (g : G) :
HomeoGroup.from (Homeomorph.smul g) = HomeoGroup.fromContinuous α g := rfl
@[simp]
theorem HomeoGroup.fromContinuous_smul (g : G) :
∀ x : α, (HomeoGroup.fromContinuous α g) • x = g • x :=
by
intro x
unfold fromContinuous
rw [<-HomeoGroup.smul₁_def', HomeoGroup.from_toHomeomorph]
unfold Homeomorph.smul
simp
theorem HomeoGroup.fromContinuous_one :
HomeoGroup.fromContinuous α (1 : G) = (1 : HomeoGroup α) :=
by
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
simp
theorem HomeoGroup.fromContinuous_mul (g h : G):
(HomeoGroup.fromContinuous α g) * (HomeoGroup.fromContinuous α h) = (HomeoGroup.fromContinuous α (g * h)) :=
by
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
rw [mul_smul]
simp
rw [mul_smul]
theorem HomeoGroup.fromContinuous_inv (g : G):
HomeoGroup.fromContinuous α g⁻¹ = (HomeoGroup.fromContinuous α g)⁻¹ :=
by
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
group_action
rw [mul_smul]
simp
theorem HomeoGroup.fromContinuous_eq_iff [FaithfulSMul G α] (g h : G):
(HomeoGroup.fromContinuous α g) = (HomeoGroup.fromContinuous α h) ↔ g = h :=
by
constructor
· intro cont_eq
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
rw [<-HomeoGroup.fromContinuous_smul g]
rw [cont_eq]
simp
· tauto
@[simp]
theorem HomeoGroup.fromContinuous_support (g : G) :
Rubin.Support α (HomeoGroup.fromContinuous α g) = Rubin.Support α g :=
by
ext x
repeat rw [Rubin.mem_support]
rw [<-HomeoGroup.smul₁_def, <-HomeoGroup.fromContinuous_def]
rw [HomeoGroup.from_toHomeomorph]
rw [Homeomorph.smul]
simp only [Equiv.toFun_as_coe, MulAction.toPerm_apply]
@[simp]
theorem HomeoGroup.fromContinuous_regularSupport (g : G) :
Rubin.RegularSupport α (HomeoGroup.fromContinuous α g) = Rubin.RegularSupport α g :=
by
unfold Rubin.RegularSupport
rw [HomeoGroup.fromContinuous_support]
@[simp]
theorem HomeoGroup.fromContinuous_smulImage (g : G) (V : Set α) :
(HomeoGroup.fromContinuous α g) •'' V = g •'' V :=
by
repeat rw [Rubin.smulImage_def]
simp
def HomeoGroup.fromContinuous_embedding (α : Type _) [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α]: G ↪ (HomeoGroup α) where
toFun := fun (g : G) => HomeoGroup.fromContinuous α g
inj' := by
intro g h fromCont_eq
simp at fromCont_eq
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
rw [<-fromContinuous_smul, fromCont_eq, fromContinuous_smul]
@[simp]
theorem HomeoGroup.fromContinuous_embedding_toFun [FaithfulSMul G α] (g : G):
HomeoGroup.fromContinuous_embedding α g = HomeoGroup.fromContinuous α g := rfl
def HomeoGroup.fromContinuous_monoidHom (α : Type _) [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α]: G →* (HomeoGroup α) where
toFun := fun (g : G) => HomeoGroup.fromContinuous α g
map_one' := by
simp
rw [fromContinuous_one]
map_mul' := by
simp
intros
rw [fromContinuous_mul]
end FromContinuousConstSMul

@ -126,13 +126,29 @@ by
let ⟨g, _, g_ne_one⟩ := (get_nontrivial_rist_elem (G := G) (α := α) isOpen_univ Set.univ_nonempty)
use g
theorem LocallyMoving.nontrivial {G α : Type _} [Group G] [TopologicalSpace α]
theorem LocallyMoving.nontrivial (G α : Type _) [Group G] [TopologicalSpace α]
[MulAction G α] [LocallyMoving G α] [Nonempty α] : Nontrivial G where
exists_pair_ne := by
use 1
simp only [ne_comm]
exact nontrivial_elem G α
theorem LocallyMoving.nonempty_iff_nontrivial (G α : Type _) [Group G] [TopologicalSpace α]
[MulAction G α] [FaithfulSMul G α] [LocallyMoving G α] : Nonempty α ↔ Nontrivial G :=
by
constructor
· intro; exact LocallyMoving.nontrivial G α
· intro nontrivial
by_contra α_empty
rw [not_nonempty_iff] at α_empty
let ⟨g, h, g_ne_h⟩ := nontrivial.exists_pair_ne
apply g_ne_h
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro a
exfalso
exact α_empty.false a
variable {G α : Type _}
variable [Group G]
variable [TopologicalSpace α]
@ -155,7 +171,7 @@ where
lemma disjoint_nbhd [T2Space α] {g : G} {x : α} (x_moved: g • x ≠ x) :
∃ U: Set α, IsOpen U ∧ x ∈ U ∧ Disjoint U (g •'' U) :=
by
have ⟨V, W, V_open, W_open, gx_in_V, x_in_W, disjoint_V_W⟩ := T2Space.t2 (g • x) x x_moved
have ⟨V, W, V_open, W_open, gx_in_V, x_in_W, disjoint_V_W⟩ := T2Space.t2 x_moved
let U := (g⁻¹ •'' V) ∩ W
use U
constructor

@ -37,12 +37,6 @@ theorem smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ) :
exact res
#align smul_zpow_eq_of_smul_eq Rubin.smul_zpow_eq_of_smul_eq
-- TODO: turn this into a structure?
def is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α]
[MulAction G β] (f : α → β) :=
∀ g : G, ∀ x : α, f (g • x) = g • f x
#align is_equivariant Rubin.is_equivariant
lemma disjoint_not_mem {α : Type _} {U V : Set α} (disj: Disjoint U V) :
∀ {x : α}, x ∈ U → x ∉ V :=
by

@ -19,13 +19,15 @@ theorem period_le_fix {p : α} {g : G} {m : } (m_pos : m > 0)
(gmp_eq_p : g ^ m • p = p) : 0 < Rubin.Period.period p g ∧ Rubin.Period.period p g ≤ m :=
by
constructor
· by_contra h'; have period_zero : Rubin.Period.period p g = 0; linarith;
rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, h_1⟩ | h; linarith;
exact Set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩
· by_contra h'
have period_zero : Rubin.Period.period p g = 0 := by linarith
rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, _⟩ | h
· linarith
· exact Set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩
exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩
#align period_le_fix Rubin.Period.period_le_fix
theorem notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0)
theorem notfix_le_period {p : α} {g : G} {n : }
(period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : , 0 < i → i < n → g ^ i • p ≠ p) :
n ≤ Rubin.Period.period p g := by
by_contra period_le
@ -34,10 +36,10 @@ theorem notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0)
(Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2
#align notfix_le_period Rubin.Period.notfix_le_period
theorem notfix_le_period' {p : α} {g : G} {n : } (n_pos : n > 0)
theorem notfix_le_period' {p : α} {g : G} {n : }
(period_pos : 0 < Rubin.Period.period p g)
(pmoves : ∀ i : Fin n, 0 < (i : ) → g ^ (i : ) • p ≠ p) : n ≤ Rubin.Period.period p g :=
Rubin.Period.notfix_le_period n_pos period_pos fun (i : ) (i_pos : 0 < i) (i_lt_n : i < n) =>
Rubin.Period.notfix_le_period period_pos fun (i : ) (i_pos : 0 < i) (i_lt_n : i < n) =>
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
#align notfix_le_period' Rubin.Period.notfix_le_period'
@ -65,7 +67,7 @@ theorem moves_within_period' {z : } (g : G) (x : α) :
0 < z → z < period x g → g^z • x ≠ x :=
by
intro n_pos n_lt_period
rw [<-Int.ofNat_natAbs_eq_of_nonneg _ (Int.le_of_lt n_pos)]
rw [<-Int.natAbs_of_nonneg (Int.le_of_lt n_pos)]
rw [zpow_ofNat]
apply moves_within_period
· rw [<-Int.natAbs_zero]
@ -86,7 +88,7 @@ theorem periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {H : Subgroup
(exp_ne_zero : Monoid.exponent H ≠ 0) :
(Rubin.Period.periods U H).Nonempty ∧
BddAbove (Rubin.Period.periods U H) ∧
∃ (m : ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p :=
∃ (m : ), m > 0 ∧ ∀ (p : α) (g : H), g ^ m • p = p :=
by
rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩
have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by
@ -135,7 +137,7 @@ theorem zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
Rubin.Period.period (p : α) (g : G) ≤ sSup (Rubin.Period.periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
_periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
intro p g
have period_in_periods : Rubin.Period.period (p : α) (g : G) ∈ Rubin.Period.periods U H := by
use p; use g

@ -11,7 +11,6 @@ import Rubin.LocallyDense
import Rubin.Topology
import Rubin.Support
import Rubin.RegularSupport
import Rubin.HomeoGroup
namespace Rubin

@ -1,268 +0,0 @@
/-
This file describes [`RigidStabilizerBasis`], which are all non-trivial subgroups of `G` constructed
by finite intersections of `RigidStabilizer G (RegularSupport α g)`.
-/
import Mathlib.Topology.Basic
import Mathlib.Topology.Homeomorph
import Rubin.RegularSupport
import Rubin.RigidStabilizer
namespace Rubin
variable {G α : Type _}
variable [Group G]
variable [MulAction G α]
variable [TopologicalSpace α]
/--
Finite intersections of rigid stabilizers of regular supports
(which are equivalent to the rigid stabilizers of finite intersections of regular supports).
-/
def RigidStabilizerInter₀ {G: Type _} (α : Type _) [Group G] [MulAction G α] [TopologicalSpace α]
(S : Finset G) : Subgroup G :=
⨅ (g ∈ S), RigidStabilizer G (RegularSupport α g)
theorem RigidStabilizerInter₀.eq_sInter (S : Finset G) :
RigidStabilizerInter₀ α S = RigidStabilizer G (⋂ g ∈ S, (RegularSupport α g)) :=
by
have img_eq : ⋂ g ∈ S, RegularSupport α g = ⋂₀ ((fun g : G => RegularSupport α g) '' S) :=
by simp only [Set.sInter_image, Finset.mem_coe]
rw [img_eq]
rw [rigidStabilizer_sInter]
unfold RigidStabilizerInter₀
ext x
repeat rw [Subgroup.mem_iInf]
constructor
· intro H T
rw [Subgroup.mem_iInf]
intro T_in_img
simp at T_in_img
let ⟨g, ⟨g_in_S, T_eq⟩⟩ := T_in_img
specialize H g
rw [Subgroup.mem_iInf] at H
rw [<-T_eq]
apply H; assumption
· intro H g
rw [Subgroup.mem_iInf]
intro g_in_S
specialize H (RegularSupport α g)
rw [Subgroup.mem_iInf] at H
simp at H
apply H g <;> tauto
/--
A predecessor structure to [`RigidStabilizerBasis`], where equality is defined on the choice of
group elements who regular support's rigid stabilizer get intersected upon.
--/
structure RigidStabilizerBasis₀ (G α : Type _) [Group G] [MulAction G α] [TopologicalSpace α] where
seed : Finset G
val_ne_bot : RigidStabilizerInter₀ α seed ≠ ⊥
def RigidStabilizerBasis₀.val (B : RigidStabilizerBasis₀ G α) : Subgroup G :=
RigidStabilizerInter₀ α B.seed
theorem RigidStabilizerBasis₀.val_def (B : RigidStabilizerBasis₀ G α) : B.val = RigidStabilizerInter₀ α B.seed := rfl
/--
The set of all non-trivial subgroups of `G` constructed
by finite intersections of `RigidStabilizer G (RegularSupport α g)`.
--/
def RigidStabilizerBasis (G α : Type _) [Group G] [MulAction G α] [TopologicalSpace α] : Set (Subgroup G) :=
{ H.val | H : RigidStabilizerBasis₀ G α }
theorem RigidStabilizerBasis.mem_iff (H : Subgroup G) :
H ∈ RigidStabilizerBasis G α ↔ ∃ B : RigidStabilizerBasis₀ G α, B.val = H := by rfl
theorem RigidStabilizerBasis.mem_iff' (H : Subgroup G)
(H_ne_bot : H ≠ ⊥) :
H ∈ RigidStabilizerBasis G α ↔ ∃ seed : Finset G, RigidStabilizerInter₀ α seed = H :=
by
rw [mem_iff]
constructor
· intro ⟨B, B_eq⟩
use B.seed
rw [RigidStabilizerBasis₀.val_def] at B_eq
exact B_eq
· intro ⟨seed, seed_eq⟩
let B := RigidStabilizerInter₀ α seed
have val_ne_bot : B ≠ ⊥ := by
unfold_let
rw [seed_eq]
exact H_ne_bot
use ⟨seed, val_ne_bot⟩
rw [<-seed_eq]
rfl
def RigidStabilizerBasis.asSets (G α : Type _) [Group G] [MulAction G α] [TopologicalSpace α] : Set (Set G) :=
{ (H.val : Set G) | H : RigidStabilizerBasis₀ G α }
theorem RigidStabilizerBasis.mem_asSets_iff (S : Set G) :
S ∈ RigidStabilizerBasis.asSets G α ↔ ∃ H ∈ RigidStabilizerBasis G α, H.carrier = S :=
by
unfold asSets RigidStabilizerBasis
simp
rfl
theorem RigidStabilizerBasis.mem_iff_asSets (H : Subgroup G) :
H ∈ RigidStabilizerBasis G α ↔ (H : Set G) ∈ RigidStabilizerBasis.asSets G α :=
by
unfold asSets RigidStabilizerBasis
simp
variable [ContinuousConstSMul G α]
lemma RigidStabilizerBasis.smulImage_mem₀ {H : Subgroup G} (H_in_ristBasis : H ∈ RigidStabilizerBasis G α)
(f : G) : ((fun g => f * g * f⁻¹) '' H.carrier) ∈ RigidStabilizerBasis.asSets G α :=
by
have G_decidable : DecidableEq G := Classical.decEq _
rw [mem_iff] at H_in_ristBasis
let ⟨seed, H_eq⟩ := H_in_ristBasis
rw [mem_asSets_iff]
let new_seed := Finset.image (fun g => f * g * f⁻¹) seed.seed
have new_seed_ne_bot : RigidStabilizerInter₀ α new_seed ≠ ⊥ := by
rw [RigidStabilizerInter₀.eq_sInter]
unfold_let
simp [<-regularSupport_smulImage]
rw [<-ne_eq]
rw [<-smulImage_iInter_fin]
have val_ne_bot := seed.val_ne_bot
rw [Subgroup.ne_bot_iff_exists_ne_one] at val_ne_bot
let ⟨⟨g, g_in_ristInter⟩, g_ne_one⟩ := val_ne_bot
simp at g_ne_one
have fgf_in_ristInter₂ : f * g * f⁻¹ ∈ RigidStabilizer G (f •'' ⋂ x ∈ seed.seed, RegularSupport α x) := by
rw [rigidStabilizer_smulImage]
group
rw [RigidStabilizerInter₀.eq_sInter] at g_in_ristInter
exact g_in_ristInter
have fgf_ne_one : f * g * f⁻¹ ≠ 1 := by
intro h₁
have h₂ := congr_arg (fun x => x * f) h₁
group at h₂
have h₃ := congr_arg (fun x => f⁻¹ * x) h₂
group at h₃
exact g_ne_one h₃
rw [Subgroup.ne_bot_iff_exists_ne_one]
use ⟨f * g * f⁻¹, fgf_in_ristInter₂⟩
simp
rw [<-ne_eq]
exact fgf_ne_one
use RigidStabilizerInter₀ α new_seed
apply And.intro
exact ⟨⟨new_seed, new_seed_ne_bot⟩, rfl⟩
rw [RigidStabilizerInter₀.eq_sInter]
unfold_let
simp [<-regularSupport_smulImage]
rw [<-smulImage_iInter_fin]
ext x
simp only [Subsemigroup.mem_carrier, Submonoid.mem_toSubsemigroup,
Subgroup.mem_toSubmonoid, Set.mem_image]
rw [rigidStabilizer_smulImage]
rw [<-H_eq, RigidStabilizerBasis₀.val_def, RigidStabilizerInter₀.eq_sInter]
constructor
· intro fxf_mem
use f⁻¹ * x * f
constructor
· exact fxf_mem
· group
· intro ⟨y, ⟨y_in_H, y_conj⟩⟩
rw [<-y_conj]
group
exact y_in_H
def RigidStabilizerBasisMul (G α : Type _) [Group G] [MulAction G α] [TopologicalSpace α]
[ContinuousConstSMul G α] (f : G) (H : Subgroup G) : Subgroup G
where
carrier := (fun g => f * g * f⁻¹) '' H.carrier
mul_mem' := by
intro a b a_mem b_mem
simp at a_mem
simp at b_mem
let ⟨a', a'_in_H, a'_eq⟩ := a_mem
let ⟨b', b'_in_H, b'_eq⟩ := b_mem
use a' * b'
constructor
· apply Subsemigroup.mul_mem' <;> simp <;> assumption
· simp
rw [<-a'_eq, <-b'_eq]
group
one_mem' := by
simp
use 1
constructor
exact Subgroup.one_mem H
group
inv_mem' := by
simp
intro g g_in_H
use g⁻¹
constructor
exact Subgroup.inv_mem H g_in_H
rw [mul_assoc]
theorem RigidStabilizerBasisMul_mem (f : G) {H : Subgroup G} (H_in_basis : H ∈ RigidStabilizerBasis G α)
: RigidStabilizerBasisMul G α f H ∈ RigidStabilizerBasis G α :=
by
rw [RigidStabilizerBasis.mem_iff_asSets]
unfold RigidStabilizerBasisMul
simp
apply RigidStabilizerBasis.smulImage_mem₀
assumption
instance rigidStabilizerBasis_smul : SMul G (RigidStabilizerBasis G α) where
smul := fun g H => ⟨
RigidStabilizerBasisMul G α g H.val,
RigidStabilizerBasisMul_mem g H.prop
theorem RigidStabilizerBasis.smul_eq (g : G) {H: Subgroup G} (H_in_basis : H ∈ RigidStabilizerBasis G α) :
g • (⟨H, H_in_basis⟩ : RigidStabilizerBasis G α) = ⟨
RigidStabilizerBasisMul G α g H,
RigidStabilizerBasisMul_mem g H_in_basis
⟩ := rfl
theorem RigidStabilizerBasis.mem_smul (f g : G) {H: Subgroup G} (H_in_basis : H ∈ RigidStabilizerBasis G α):
f ∈ (g • (⟨H, H_in_basis⟩ : RigidStabilizerBasis G α)).val ↔ g⁻¹ * f * g ∈ H :=
by
rw [RigidStabilizerBasis.smul_eq]
simp
rw [<-Subgroup.mem_carrier]
unfold RigidStabilizerBasisMul
simp
constructor
· intro ⟨x, x_in_H, f_eq⟩
rw [<-f_eq]
group
exact x_in_H
· intro gfg_in_H
use g⁻¹ * f * g
constructor
assumption
group
instance rigidStabilizerBasis_mulAction : MulAction G (RigidStabilizerBasis G α) where
one_smul := by
intro ⟨H, H_in_ristBasis⟩
ext x
rw [RigidStabilizerBasis.mem_smul]
group
mul_smul := by
intro f g ⟨B, B_in_ristBasis⟩
ext x
repeat rw [RigidStabilizerBasis.mem_smul]
group
end Rubin

@ -387,16 +387,18 @@ variable [ContinuousConstSMul G α]
theorem support_isOpen (g : G) [T2Space α]: IsOpen (Support α g) := by
apply isOpen_iff_forall_mem_open.mpr
intro x xmoved
rcases T2Space.t2 (g • x) x xmoved with ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩
exact
⟨V ∩ (g⁻¹ •'' U), fun y yW =>
Disjoint.ne_of_mem
disjoint_U_V
(mem_inv_smulImage.mp (Set.mem_of_mem_inter_right yW))
(Set.mem_of_mem_inter_left yW),
let ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩ := T2Space.t2 xmoved
refine ⟨
V ∩ (g⁻¹ •'' U),
?subset,
IsOpen.inter open_V (smulImage_isOpen g⁻¹ open_U),
⟨x_in_V, mem_inv_smulImage.mpr gx_in_U⟩
intro y ⟨yV, yU⟩
apply Disjoint.ne_of_mem disjoint_U_V _ yV
rw [mem_inv_smulImage] at yU
exact yU
end Continuous

@ -1,5 +1,6 @@
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.GroupTheory.GroupAction.Hom
import Mathlib.Topology.Basic
import Mathlib.Topology.Homeomorph
import Mathlib.Topology.Algebra.ConstMulAction
@ -9,33 +10,88 @@ import Rubin.MulActionExt
namespace Rubin
-- TODO: give this a notation?
-- TODO: coe to / extend MulActionHom
section Equivariant
-- TODO: rename or remove?
def IsEquivariant (G : Type _) {β : Type _} [Group G] [MulAction G α]
[MulAction G β] (f : α → β) :=
∀ g : G, ∀ x : α, f (g • x) = g • f x
-- TODO: rename to MulActionHomeomorph
structure EquivariantHomeomorph (G α β : Type _) [Group G] [TopologicalSpace α]
[TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where
equivariant : is_equivariant G toFun
#align equivariant_homeomorph Rubin.EquivariantHomeomorph
toFun_equivariant' : IsEquivariant G toFun
variable {G α β : Type _}
variable {G α β γ: Type*}
variable [Group G]
variable [TopologicalSpace α] [TopologicalSpace β]
variable [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ]
variable [MulAction G α] [MulAction G β] [MulAction G γ]
theorem equivariant_fun [MulAction G α] [MulAction G β]
(h : EquivariantHomeomorph G α β) :
is_equivariant G h.toFun :=
h.equivariant
#align equivariant_fun Rubin.equivariant_fun
theorem EquivariantHomeomorph.toFun_equivariant (f : EquivariantHomeomorph G α β) :
IsEquivariant G f.toHomeomorph :=
by
show IsEquivariant G f.toFun
exact f.toFun_equivariant'
instance EquivariantHomeomorph.smulHomClass : SMulHomClass (EquivariantHomeomorph G α β) G α β where
coe := fun f => f.toFun
coe_injective' := by
show Function.Injective (fun f => f.toHomeomorph)
refine Function.Injective.comp FunLike.coe_injective ?mk_inj
intro f g
rw [mk.injEq]
tauto
map_smul := fun f => f.toFun_equivariant
theorem equivariant_inv [MulAction G α] [MulAction G β]
theorem EquivariantHomeomorph.invFun_equivariant
(h : EquivariantHomeomorph G α β) :
is_equivariant G h.invFun :=
IsEquivariant G h.invFun :=
by
intro g x
symm
let e := congr_arg h.invFun (h.equivariant g (h.invFun x))
let e := congr_arg h.invFun (h.toFun_equivariant' g (h.invFun x))
rw [h.left_inv _, h.right_inv _] at e
exact e
#align equivariant_inv Rubin.equivariant_inv
def EquivariantHomeomorph.trans (f₁ : EquivariantHomeomorph G α β) (f₂ : EquivariantHomeomorph G β γ) :
EquivariantHomeomorph G α γ
where
toHomeomorph := Homeomorph.trans f₁.toHomeomorph f₂.toHomeomorph
toFun_equivariant' := by
intro g x
simp
rw [f₁.toFun_equivariant]
rw [f₂.toFun_equivariant]
@[simp]
theorem EquivariantHomeomorph.trans_toFun (f₁ : EquivariantHomeomorph G α β) (f₂ : EquivariantHomeomorph G β γ) :
(f₁.trans f₂).toFun = f₂.toFun ∘ f₁.toFun :=
by
simp [trans]
rfl
@[simp]
theorem EquivariantHomeomorph.trans_invFun (f₁ : EquivariantHomeomorph G α β) (f₂ : EquivariantHomeomorph G β γ) :
(f₁.trans f₂).invFun = f₁.invFun ∘ f₂.invFun :=
by
simp [trans]
rfl
def EquivariantHomeomorph.inv (f : EquivariantHomeomorph G α β) :
EquivariantHomeomorph G β α
where
toHomeomorph := f.symm
toFun_equivariant' := f.invFun_equivariant
@[simp]
theorem EquivariantHomeomorph.inv_toFun (f : EquivariantHomeomorph G α β) :
f.inv.toFun = f.invFun := rfl
@[simp]
theorem EquivariantHomeomorph.inv_invFun (f : EquivariantHomeomorph G α β) :
f.inv.invFun = f.toFun := rfl
end Equivariant
open Topology

@ -4,7 +4,7 @@
[{"url": "https://github.com/leanprover/std4",
"type": "git",
"subDir": null,
"rev": "9e37a01f8590f81ace095b56710db694b5bf8ca0",
"rev": "d8610e1bcb91c013c3d868821c0ef28bf693be07",
"name": "std",
"manifestFile": "lake-manifest.json",
"inputRev": "main",
@ -13,7 +13,7 @@
{"url": "https://github.com/leanprover-community/quote4",
"type": "git",
"subDir": null,
"rev": "ccba5d35d07a448fab14c0e391c8105df6e2564c",
"rev": "1c88406514a636d241903e2e288d21dc6d861e01",
"name": "Qq",
"manifestFile": "lake-manifest.json",
"inputRev": "master",
@ -22,7 +22,7 @@
{"url": "https://github.com/leanprover-community/aesop",
"type": "git",
"subDir": null,
"rev": "3141402ba5a5f0372d2378fd75a481bc79a74ecf",
"rev": "69404390bdc1de946bf0a2e51b1a69f308e56d7a",
"name": "aesop",
"manifestFile": "lake-manifest.json",
"inputRev": "master",
@ -31,10 +31,10 @@
{"url": "https://github.com/leanprover-community/ProofWidgets4",
"type": "git",
"subDir": null,
"rev": "909febc72b4f64628f8d35cd0554f8a90b6e0749",
"rev": "31d41415d5782a196999d4fd8eeaef3cae386a5f",
"name": "proofwidgets",
"manifestFile": "lake-manifest.json",
"inputRev": "v0.0.23",
"inputRev": "v0.0.24",
"inherited": true,
"configFile": "lakefile.lean"},
{"url": "https://github.com/leanprover/lean4-cli",
@ -49,7 +49,7 @@
{"url": "https://github.com/leanprover-community/mathlib4.git",
"type": "git",
"subDir": null,
"rev": "c0f7586a3e77660ff51b9156783aaf8eab9506de",
"rev": "95f91f8e66f14c0eecde8da6dbfeff39d44cbd81",
"name": "mathlib",
"manifestFile": "lake-manifest.json",
"inputRev": null,

@ -1 +1 @@
leanprover/lean4:v4.4.0-rc1
leanprover/lean4:v4.5.0-rc1

Loading…
Cancel
Save