You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/Filter.lean

1295 lines
42 KiB

import Mathlib.Order.Filter.Basic
import Mathlib.Order.Hom.CompleteLattice
import Mathlib.Topology.Basic
import Mathlib.Topology.Bases
import Mathlib.Topology.Separation
section Order
variable {α β : Type _}
def DoubleMonotoneOn [Preorder α] [Preorder β] (f: α → β) (B : Set α): Prop :=
∀ x, x ∈ B → ∀ y, y ∈ B → (x ≤ y ↔ f x ≤ f y)
variable {f : α → β} {B : Set α}
theorem DoubleMonotoneOn.monotoneOn [Preorder α] [Preorder β] (f_double_mono : DoubleMonotoneOn f B) :
MonotoneOn f B :=
by
intro x x_in_B y y_in_B
rw [f_double_mono x x_in_B y y_in_B]
tauto
theorem DoubleMonotoneOn.injective [PartialOrder α] [Preorder β] (f_double_mono : DoubleMonotoneOn f B) :
Function.Injective (Set.restrict B f) :=
by
intro ⟨x, x_in_B⟩ ⟨y, y_in_B⟩
simp
intro fx_eq_fy
apply le_antisymm
swap
symm at fx_eq_fy
all_goals apply le_of_eq at fx_eq_fy
all_goals rw [f_double_mono]
all_goals assumption
theorem DoubleMonotoneOn.injective' [PartialOrder α] [Preorder β] (f_double_mono : DoubleMonotoneOn f B) :
∀ x ∈ B, ∀ y ∈ B,
f x = f y → x = y :=
by
intro x x_in_B y y_in_B fx_eq_fy
have fx_eq : f x = Set.restrict B f ⟨x, x_in_B⟩ := by simp
have fy_eq : f y = Set.restrict B f ⟨y, y_in_B⟩ := by simp
rw [fx_eq, fy_eq] at fx_eq_fy
apply (injective f_double_mono) at fx_eq_fy
simp at fx_eq_fy
exact fx_eq_fy
theorem DoubleMonotoneOn.subset_iff {B : Set (Set α)} {f : Set α → Set β} (f_double_mono : DoubleMonotoneOn f B) :
∀ s ∈ B, ∀ t ∈ B, s ⊆ t ↔ f s ⊆ f t :=
by
simp only [<-Set.le_eq_subset]
exact f_double_mono
structure OrderIsoOn (α : Type _) (β : Type _) [Preorder α] [Preorder β] (S : Set α) :=
toFun : α → β
invFun : β → α
leftInv_on : ∀ a ∈ S, invFun (toFun a) = a
rightInv_on : ∀ b ∈ toFun '' S, toFun (invFun b) = b
toFun_doubleMonotone : DoubleMonotoneOn toFun S
theorem OrderIsoOn.mk_of_subset [Preorder α] [Preorder β] (F : OrderIsoOn α β S)
{T : Set α} (T_ss_S : T ⊆ S) : OrderIsoOn α β T
where
toFun := F.toFun
invFun := F.invFun
leftInv_on := by
intro a a_in_T
rw [F.leftInv_on a (T_ss_S a_in_T)]
rightInv_on := by
intro b b_in_mT
have b_in_mS : b ∈ F.toFun '' S := Set.image_subset _ T_ss_S b_in_mT
rw [F.rightInv_on b b_in_mS]
toFun_doubleMonotone := by
intro a a_in_T b b_in_T
rw [F.toFun_doubleMonotone a (T_ss_S a_in_T) b (T_ss_S b_in_T)]
@[simp]
theorem OrderIsoOn.mk_of_subset_toFun [Preorder α] [Preorder β] (F : OrderIsoOn α β S)
{T : Set α} (T_ss_S : T ⊆ S) : (F.mk_of_subset T_ss_S).toFun = F.toFun :=
by
unfold mk_of_subset
rfl
@[simp]
theorem OrderIsoOn.mk_of_subset_invFun [Preorder α] [Preorder β] (F : OrderIsoOn α β S)
{T : Set α} (T_ss_S : T ⊆ S) : (F.mk_of_subset T_ss_S).invFun = F.invFun :=
by
unfold mk_of_subset
rfl
theorem OrderIsoOn.invFun_doubleMonotone [Preorder α] [Preorder β] (F : OrderIsoOn α β S) :
DoubleMonotoneOn F.invFun (F.toFun '' S) :=
by
intro x ⟨x', x'_in_S, x_eq⟩ y ⟨y', y'_in_S, y_eq⟩
rw [<-x_eq, <-y_eq]
(repeat rw [F.leftInv_on]) <;> try assumption
symm
apply toFun_doubleMonotone <;> assumption
instance [Preorder α] [Preorder β] : CoeOut (OrderIsoOn α β S) (α → β) where
coe := fun F x => F.toFun x
variable [Preorder α] [Preorder β]
theorem OrderIsoOn.toFun_injective (F : OrderIsoOn α β S) :
Function.Injective (Set.restrict S F.toFun) :=
by
intro ⟨x, x_in_S⟩ ⟨y, y_in_S⟩
simp
intro fX_eq_fY
rw [<-F.leftInv_on _ x_in_S]
rw [<-F.leftInv_on _ y_in_S]
rw [fX_eq_fY]
theorem OrderIsoOn.toFun_inj (F : OrderIsoOn α β S) :
∀ x ∈ S, ∀ y ∈ S, F.toFun x = F.toFun y → x = y :=
by
intro x xs y ys fx_eq_fy
have res := F.toFun_injective (by
show Set.restrict S F.toFun ⟨x, xs⟩ = Set.restrict S F.toFun ⟨y, ys⟩
simp
exact fx_eq_fy
)
simp at res
exact res
theorem OrderIsoOn.mem_toFun_image (F : OrderIsoOn α β S) (y : β):
y ∈ F.toFun '' S → F.invFun y ∈ S :=
by
simp
intro x x_in_S y_eq
rw [<-y_eq]
rw [F.leftInv_on x x_in_S]
assumption
theorem OrderIsoOn.toFun_eq_to_invFun (F : OrderIsoOn α β S) :
∀ x ∈ S, ∀ y, F.toFun x = y → x = F.invFun y :=
by
intro x x_in_S y y_eq
have y_in_mS : y ∈ F.toFun '' S := by use x
rw [<-F.rightInv_on y y_in_mS] at y_eq
apply F.toFun_inj <;> try assumption
apply mem_toFun_image
assumption
theorem OrderIsoOn.toFun_eq_iff (F : OrderIsoOn α β S) :
∀ x ∈ S, ∀ y ∈ F.toFun '' S, F.toFun x = y ↔ x = F.invFun y :=
by
intro x x_in_S y y_in_fS
constructor
· apply toFun_eq_to_invFun
assumption
· intro x_eq
rw [x_eq]
apply F.rightInv_on
assumption
@[simp]
theorem OrderIsoOn.leftInv_image (F : OrderIsoOn α β S) :
(F.invFun ∘ F.toFun) '' S = S :=
by
ext x
simp
constructor
· intro ⟨y, y_in_S, y_eq⟩
rw [F.leftInv_on y y_in_S] at y_eq
exact y_eq ▸ y_in_S
· intro x_in_S
use x
exact ⟨x_in_S, F.leftInv_on x x_in_S⟩
@[simp]
theorem OrderIsoOn.leftInv_image' (F : OrderIsoOn α β S) :
F.invFun '' (F.toFun '' S) = S := by rw [Set.image_image, <-Function.comp_def, leftInv_image]
def OrderIsoOn.comp {γ : Type _} [Preorder γ] (F : OrderIsoOn α β S)
(G : OrderIsoOn β γ (F.toFun '' S)) : OrderIsoOn α γ S where
toFun := G.toFun ∘ F.toFun
invFun := F.invFun ∘ G.invFun
leftInv_on := by
intro x x_in_S
simp
rw [G.leftInv_on _ (by use x)]
rw [F.leftInv_on x x_in_S]
rightInv_on := by
intro y y_in_img
simp
rw [Function.comp_def, <-Set.image_image G.toFun F.toFun] at y_in_img
let ⟨z, z_in_fS, fz_eq_y⟩ := y_in_img
have z_eq_fy : z = G.invFun y := G.toFun_eq_to_invFun z z_in_fS y fz_eq_y
rw [<-z_eq_fy, <-fz_eq_y]
rw [F.rightInv_on]
assumption
toFun_doubleMonotone := by
intro x x_in_S y y_in_S
simp
apply Iff.trans
exact F.toFun_doubleMonotone x x_in_S y y_in_S
apply G.toFun_doubleMonotone
use x
use y
@[simp]
theorem OrderIsoOn.comp_toFun {γ : Type _} [Preorder γ] (F : OrderIsoOn α β S) (G : OrderIsoOn β γ (F.toFun '' S)) :
(F.comp G).toFun = G.toFun ∘ F.toFun := rfl
def OrderIsoOn.inv (F : OrderIsoOn α β S) : OrderIsoOn β α (F.toFun '' S) where
toFun := F.invFun
invFun := F.toFun
leftInv_on := F.rightInv_on
rightInv_on := by
simp
exact F.leftInv_on
toFun_doubleMonotone := F.invFun_doubleMonotone
@[simp]
theorem OrderIsoOn.inv_toFun (F : OrderIsoOn α β S) : F.inv.toFun = F.invFun := rfl
@[simp]
theorem OrderIsoOn.inv_invFun (F : OrderIsoOn α β S) : F.inv.invFun = F.toFun := rfl
def OrderIso.orderIsoOn (F : α ≃o β) (S : Set α) : OrderIsoOn α β S where
toFun := F.toFun
invFun := F.invFun
leftInv_on := by
intro a _
apply Equiv.left_inv
rightInv_on := by
intro b _
apply Equiv.right_inv
toFun_doubleMonotone := by
intro a _ b _
exact Iff.symm (RelIso.map_rel_iff F)
-- instance : Coe (α ≃o β) (OrderIsoOn α β S) where
-- coe := fun f => OrderIso.orderIsoOn f S
@[simp]
theorem OrderIso.orderIsoOn_toFun (F : α ≃o β) (S : Set α) :
(OrderIso.orderIsoOn F S).toFun = F.toFun := rfl
@[simp]
theorem OrderIso.orderIsoOn_invFun (F : α ≃o β) (S : Set α) :
(OrderIso.orderIsoOn F S).invFun = F.invFun := rfl
theorem OrderIso.orderIsoOn_image (F : α ≃o β) (S T : Set α) :
(OrderIso.orderIsoOn F S).toFun '' T = F '' T := rfl
def OrderIsoOn.identity (α : Type _) [Preorder α] (S : Set α) : OrderIsoOn α α S where
toFun := id
invFun := id
leftInv_on := by simp
rightInv_on := by simp
toFun_doubleMonotone := by simp [DoubleMonotoneOn]
@[simp]
theorem OrderIsoOn.comp_inv (F : OrderIsoOn α β S) : ∀ x ∈ S, (F.comp (F.inv)).toFun x = x := by
simp
exact F.leftInv_on
end Order
def Filter.InBasis {α : Type _} (F : Filter α) (B : Set (Set α)) : Prop :=
∀ (S : Set α), S ∈ F → ∃ T ∈ F, T ∈ B ∧ T ⊆ S
theorem Filter.InBasis.from_hasBasis {α ι : Type _} {F : Filter α} {pi : ι → Prop} {si : ι → Set α}
(F_basis: Filter.HasBasis F pi si)
{B : Set (Set α)}
(basis_subset : ∀ i : ι, pi i → si i ∈ B) :
Filter.InBasis F B :=
by
intro S S_in_F
let ⟨i, pi_i, si_i_ss⟩ := (F_basis.mem_iff' _).mp S_in_F
use si i
repeat' apply And.intro
· rw [F_basis.mem_iff']
use i
· apply basis_subset
assumption
· assumption
variable {α : Type _} {F : Filter α} {B : Set (Set α)}
theorem Filter.InBasis.mono {C : Set (Set α)} (F_basis : F.InBasis B) (B_ss_C : B ⊆ C) :
F.InBasis C :=
by
intro S S_in_F
let ⟨T, T_in_F, T_in_B, T_ss_S⟩ := F_basis S S_in_F
use T
repeat' apply And.intro
any_goals apply B_ss_C
all_goals assumption
theorem Filter.InBasis.inf_eq_bot_iff {F G : Filter α} (F_in_basis : F.InBasis B) (G_in_basis : G.InBasis B) :
F ⊓ G = ⊥ ↔ ∃ U ∈ B, ∃ V ∈ B, U ∈ F ∧ V ∈ G ∧ U ∩ V = ∅ :=
by
rw [Filter.inf_eq_bot_iff]
constructor
· intro ⟨U, U_in_F, V, V_in_G, UV_empty⟩
let ⟨U', U'_in_F, U'_in_B, U'_ss_U⟩ := F_in_basis U U_in_F
let ⟨V', V'_in_G, V'_in_B, V'_ss_V⟩ := G_in_basis V V_in_G
refine ⟨U', U'_in_B, V', V'_in_B, U'_in_F, V'_in_G, ?inter_empty⟩
apply Set.eq_empty_of_subset_empty
apply subset_trans _ (subset_of_eq UV_empty)
exact Set.inter_subset_inter U'_ss_U V'_ss_V
· intro ⟨U, _, V, _, U_in_F, V_in_G, UV_empty⟩
exact ⟨U, U_in_F, V, V_in_G, UV_empty⟩
def Filter.InBasis.basis {α : Type _} (F : Filter α) (B : Set (Set α)): Set (Set α) :=
{ S : Set α | S ∈ F ∧ S ∈ B }
theorem Filter.InBasis.basis_subset : Filter.InBasis.basis F B ⊆ B := fun _ ⟨_, S_in_B⟩ => S_in_B
theorem Filter.InBasis.basis_nonempty (F_basis : Filter.InBasis F B): Set.Nonempty (Filter.InBasis.basis F B) :=
by
let ⟨T, T_in_F, T_in_B, _⟩ := F_basis Set.univ Filter.univ_mem
exact ⟨T, T_in_F, T_in_B⟩
theorem Filter.InBasis.basis_nonempty' (F_basis : Filter.InBasis F B): Nonempty (Filter.InBasis.basis F B) :=
by
rw [Set.nonempty_coe_sort]
exact Filter.InBasis.basis_nonempty F_basis
theorem Filter.InBasis.principal {S : Set α} (S_in_B : S ∈ B) :
(Filter.principal S).InBasis B :=
by
intro T
simp only [mem_principal]
intro T_in_pS
use S
theorem Filter.InBasis.basis_hasBasis (F_basis : Filter.InBasis F B):
F.HasBasis (fun S => S ∈ Filter.InBasis.basis F B) id :=
by
constructor
intro T
simp [basis, and_assoc]
constructor
· intro T_in_F
exact F_basis T T_in_F
· intro ⟨S, S_in_F, _, S_ss_T⟩
exact mem_of_superset S_in_F S_ss_T
theorem Filter.InBasis.mem_image_basis_of_injective_on (F : Filter α) (B : Set (Set α))
{f : Set α → Set β} (f_injective_on : Function.Injective (Set.restrict B f))
{S : Set α} (S_in_B : S ∈ B) : f S ∈ f '' (basis F B) ↔ S ∈ basis F B :=
by
simp
constructor
· intro ⟨T, T_in_basis, fT_eq_fS⟩
have T_eq_S : (⟨T, T_in_basis.right⟩ : { s // s ∈ B }) = ⟨S, S_in_B⟩ := by
apply f_injective_on
simp
exact fT_eq_fS
simp at T_eq_S
rw [<-T_eq_S]
assumption
· intro S_in_basis
use S
def Filter.InBasis.map_basis {α β : Type _} (F : Filter α) (B : Set (Set α))
(map : Set α → Set β): Filter β :=
⨅ (S : Filter.InBasis.basis F B), Filter.principal (map S)
lemma Filter.InBasis.map_directed {β : Type _} (F_basis : F.InBasis B)
(map : Set α → Set β) (map_mono : MonotoneOn map B) :
Directed (fun S T => S ≥ T) fun S : Filter.InBasis.basis F B => Filter.principal (map S.val) :=
by
intro ⟨S, S_in_F, S_in_B⟩ ⟨T, T_in_F, T_in_B⟩
have S_int_T_in_F : S ∩ T ∈ F := inter_mem S_in_F T_in_F
let ⟨U, U_in_F, U_in_B, U_ss_ST⟩ := F_basis _ S_int_T_in_F
let ⟨U_ss_S, U_ss_T⟩ := Set.subset_inter_iff.mp U_ss_ST
use ⟨U, U_in_F, U_in_B⟩
simp
constructor <;> apply map_mono <;> assumption
theorem Filter.InBasis.map_basis_neBot {β : Type _} [Nonempty β] (F_basis : F.InBasis B)
(map : Set α → Set β) (map_mono : MonotoneOn map B) (map_nonempty : ∀ S ∈ B, Set.Nonempty (map S)) :
Filter.NeBot (Filter.InBasis.map_basis F B map) :=
by
apply Filter.iInf_neBot_of_directed
· exact Filter.InBasis.map_directed F_basis map map_mono
· intro ⟨S, S_in_F, S_in_B⟩
simp
exact map_nonempty _ S_in_B
theorem Filter.InBasis.map_basis_neBot_of_neBot {β : Type _} [Nonempty β] [Filter.NeBot F] (F_basis : F.InBasis B)
(map : Set α → Set β) (map_mono : MonotoneOn map B) (map_nonempty : ∀ S ∈ B, S.Nonempty → Set.Nonempty (map S)) :
Filter.NeBot (Filter.InBasis.map_basis F B map) :=
by
apply Filter.iInf_neBot_of_directed
· exact Filter.InBasis.map_directed F_basis map map_mono
· intro ⟨S, S_in_F, S_in_B⟩
simp
exact map_nonempty _ S_in_B (nonempty_of_mem S_in_F)
theorem Filter.InBasis.map_basis_hasBasis {β : Type _} (F_basis : F.InBasis B)
(map : Set α → Set β) (map_mono : MonotoneOn map B):
(Filter.InBasis.map_basis F B map).HasBasis (fun T : Set α => T ∈ F ∧ T ∈ B) map :=
by
unfold map_basis
constructor
intro T
have basis_nonempty := Filter.InBasis.basis_nonempty' F_basis
rw [Filter.mem_iInf_of_directed]
· simp [basis, <-and_assoc]
· exact Filter.InBasis.map_directed F_basis map map_mono
theorem Filter.InBasis.map_basis_inBasis (F_basis : Filter.InBasis F B)
(map : Set α → Set β) (map_mono : MonotoneOn map B) :
(Filter.InBasis.map_basis F B map).InBasis (map '' B) :=
by
intro S S_in_map
have has_basis := Filter.InBasis.map_basis_hasBasis F_basis map map_mono
rw [has_basis.mem_iff'] at S_in_map
let ⟨T, ⟨T_in_F, T_in_B⟩, mapT_ss_S⟩ := S_in_map
use map T
repeat' apply And.intro
· rw [has_basis.mem_iff']
use T
· simp
use T
· assumption
theorem Filter.InBasis.map_basis_id (F_basis : F.InBasis B) (f : Set α → Set α) (f_idlike : ∀ S ∈ B, f S = S):
Filter.InBasis.map_basis F B f = F :=
by
simp [map_basis]
ext S
have basis_nonempty := Filter.InBasis.basis_nonempty' F_basis
have basis_directed := Filter.InBasis.map_directed F_basis id (monotone_id.monotoneOn B)
simp only [id_eq] at basis_directed
conv => {
lhs
rhs
congr; intro x
rw [f_idlike _ x.prop.right]
}
rw [mem_iInf_of_directed basis_directed]
rw [(F_basis.basis_hasBasis).mem_iff]
simp
theorem Filter.InBasis.mem_map_basis
(map : Set α → Set β) (map_mono : MonotoneOn map B)
(F_basis : Filter.InBasis F B) (x : Set β) :
x ∈ (Filter.InBasis.map_basis F B map) ↔ ∃ y : Set α, y ∈ F ∧ y ∈ B ∧ map y ⊆ x :=
by
rw [(Filter.InBasis.map_basis_hasBasis F_basis map map_mono).mem_iff]
simp only [and_assoc]
theorem nhds_in_basis [TopologicalSpace α] (p : α) (B_basis : TopologicalSpace.IsTopologicalBasis B):
(nhds p).InBasis B :=
Filter.InBasis.from_hasBasis B_basis.nhds_hasBasis (fun _ ⟨in_B, _⟩ => in_B)
theorem Filter.InBasis.basis_map_basis (map : Set α → Set β)
(map_double_mono : DoubleMonotoneOn map B) {F : Filter α} (F_basis : F.InBasis B):
Filter.InBasis.basis (Filter.InBasis.map_basis F B map) (map '' B) = map '' (Filter.InBasis.basis F B) :=
by
ext x
simp [basis]
rw [Filter.InBasis.mem_map_basis map map_double_mono.monotoneOn F_basis]
constructor
· intro ⟨⟨y1, y1_in_F, _, y1_ss_x⟩, ⟨y2, y2_in_B, y2_eq⟩⟩
use y2
rw [<-y2_eq] at y1_ss_x
repeat' apply And.intro
apply Filter.mem_of_superset y1_in_F
rw [map_double_mono.subset_iff]
all_goals assumption
· intro ⟨S, ⟨S_in_F, S_in_B⟩, x_eq⟩
constructor
all_goals use S
repeat' apply And.intro
any_goals apply subset_of_eq
all_goals assumption
theorem Filter.InBasis.mem_basis_iff_of_basis_set (F : Filter α) {S : Set α} (S_in_B : S ∈ B):
S ∈ basis F B ↔ S ∈ F :=
by
unfold basis
simp
tauto
theorem Filter.InBasis.map_mem_map_basis_of_basis_set (map : Set α → Set β) (map_double_mono : DoubleMonotoneOn map B)
{F : Filter α} (F_basis : F.InBasis B) {S : Set α} (S_in_B : S ∈ B):
map S ∈ Filter.InBasis.map_basis F B map ↔ S ∈ F :=
by
suffices S ∈ basis F B ↔ map S ∈ map '' (basis F B) by
rw [mem_basis_iff_of_basis_set _ S_in_B] at this
rw [this]
have mS_in_mB : map S ∈ map '' B := by
simp
use S
rw [<-basis_map_basis map map_double_mono F_basis]
rw [mem_basis_iff_of_basis_set _ mS_in_mB]
rw [Filter.InBasis.mem_image_basis_of_injective_on _ _ map_double_mono.injective S_in_B]
theorem Filter.InBasis.mem_map_basis'
(map : Set α → Set β) (map_double_mono : DoubleMonotoneOn map B)
(F_basis : Filter.InBasis F B) {x : Set β} (x_in_basis : x ∈ map '' B):
x ∈ (Filter.InBasis.map_basis F B map) ↔ ∃ y : Set α, y ∈ F ∧ y ∈ B ∧ map y = x :=
by
let ⟨y, y_in_B, y_eq⟩ := x_in_basis
rw [<-y_eq]
rw [map_mem_map_basis_of_basis_set map map_double_mono F_basis y_in_B]
constructor
· intro y_in_F
use y
· intro ⟨z, z_in_F, z_in_B, z_eq_y⟩
apply (map_double_mono.injective' z z_in_B y y_in_B) at z_eq_y
exact z_eq_y ▸ z_in_F
-- TODO: clean this up :c
theorem Filter.InBasis.map_basis_comp {γ : Type _} (m₁ : OrderIsoOn (Set α) (Set β) B)
(m₂ : OrderIsoOn (Set β) (Set γ) (m₁.toFun '' B))
{F : Filter α} (F_basis : F.InBasis B):
Filter.InBasis.map_basis (Filter.InBasis.map_basis F B m₁) (m₁.toFun '' B) m₂.toFun = Filter.InBasis.map_basis F B (m₁.comp m₂).toFun :=
by
unfold map_basis
rw [iInf_subtype]
simp [basis_map_basis]
rw [<-iInf_subtype (f := fun i => Filter.principal (m₂.toFun i.val))]
have F'_basis := (Filter.InBasis.map_basis_inBasis F_basis m₁.toFun m₁.toFun_doubleMonotone.monotoneOn)
have basis_nonempty : Nonempty { i // i ∈ basis (⨅ S : basis F B, Filter.principal (m₁.toFun ↑S)) (m₁.toFun '' B) } :=
(Filter.InBasis.basis_nonempty' F'_basis).elim (fun p => ⟨p.val, p.prop⟩)
have basis_nonempty' := Filter.InBasis.basis_nonempty' F_basis
have m₁_directed := Filter.InBasis.map_directed F_basis m₁.toFun m₁.toFun_doubleMonotone.monotoneOn
have m₂_directed := Filter.InBasis.map_directed F'_basis m₂.toFun m₂.toFun_doubleMonotone.monotoneOn
have m₁₂_directed := Filter.InBasis.map_directed F_basis (m₁.comp m₂).toFun (m₁.comp m₂).toFun_doubleMonotone.monotoneOn
simp only [OrderIsoOn.comp_toFun, Function.comp_apply] at m₁₂_directed
ext S
rw [mem_iInf_of_directed]
swap
assumption
constructor
· intro ⟨⟨T, ⟨T_in_basis, T_in_m₁B⟩⟩, m₂T_ss_S⟩
simp at m₂T_ss_S
apply Filter.mem_of_superset _ m₂T_ss_S
rw [mem_iInf_of_directed]
rw [mem_iInf_of_directed] at T_in_basis
any_goals assumption
let ⟨⟨U, ⟨U_in_F, U_in_B⟩⟩, m₁U_ss_T⟩ := T_in_basis
simp at m₁U_ss_T
use ⟨U, ⟨U_in_F, U_in_B⟩⟩
simp
apply m₂.toFun_doubleMonotone.monotoneOn
use U
all_goals assumption
· intro S_in_iInf
rw [mem_iInf_of_directed] at S_in_iInf
any_goals assumption
let ⟨⟨U, ⟨U_in_F, U_in_B⟩⟩, m₁₂U_ss_S⟩ := S_in_iInf
simp at m₁₂U_ss_S
have m₁U_in_basis : m₁.toFun U ∈ basis (map_basis F B m₁.toFun) (m₁.toFun '' B) := by
constructor
swap
use U
rw [map_mem_map_basis_of_basis_set m₁.toFun m₁.toFun_doubleMonotone]
all_goals assumption
use ⟨m₁.toFun U, m₁U_in_basis⟩
assumption
theorem Filter.InBasis.map_basis_inv (map : OrderIsoOn (Set α) (Set β) B)
{F : Filter α} (F_basis : F.InBasis B):
Filter.InBasis.map_basis (Filter.InBasis.map_basis F B map) (map.toFun '' B) map.invFun = F :=
by
rw [<-map.inv_toFun, map_basis_comp _ _ F_basis, map_basis_id F_basis]
exact OrderIsoOn.comp_inv map
theorem Filter.InBasis.map_basis_inv' (map : OrderIsoOn (Set α) (Set β) B)
{F : Filter β} (F_basis : F.InBasis (map.toFun '' B)):
Filter.InBasis.map_basis (Filter.InBasis.map_basis F (map.toFun '' B) map.invFun) B map.toFun = F :=
by
nth_rw 4 [<-OrderIsoOn.leftInv_image' map]
rw [<-map.inv_toFun]
nth_rw 5 [<-map.inv_invFun]
rw [<-map.inv.inv_toFun]
rw [map_basis_comp map.inv map.inv.inv F_basis, map_basis_id F_basis]
simp
intro a a_in_B
rw [map.leftInv_on a a_in_B]
theorem Filter.InBasis.map_basis_mono (map : OrderIsoOn (Set α) (Set β) B)
{F G : Filter α} (F_basis : F.InBasis B) (G_basis : G.InBasis B):
Filter.InBasis.map_basis F B map.toFun ≤ Filter.InBasis.map_basis G B map.toFun → F ≤ G :=
by
intro mF_le_mG S S_in_G
let ⟨T, T_in_G, T_in_B, T_ss_S⟩ := G_basis S S_in_G
have mT_in_mG : map.toFun T ∈ map_basis G B map.toFun := by
rw [map_mem_map_basis_of_basis_set map.toFun map.toFun_doubleMonotone]
all_goals assumption
have mT_in_mF := mF_le_mG mT_in_mG
rw [map_mem_map_basis_of_basis_set map.toFun map.toFun_doubleMonotone] at mT_in_mF
apply Filter.mem_of_superset mT_in_mF
all_goals assumption
theorem Filter.InBasis.map_basis_le_iff (map : OrderIsoOn (Set α) (Set β) B)
{F G : Filter α} (F_basis : F.InBasis B) (G_basis : G.InBasis B):
Filter.InBasis.map_basis F B map.toFun ≤ Filter.InBasis.map_basis G B map.toFun ↔ F ≤ G :=
by
constructor
· exact map_basis_mono map F_basis G_basis
· nth_rw 1 [<-map_basis_inv map F_basis]
nth_rw 1 [<-map_basis_inv map G_basis]
rw [<-OrderIsoOn.inv_toFun]
apply map_basis_mono
all_goals apply map_basis_inBasis
any_goals assumption
all_goals exact map.toFun_doubleMonotone.monotoneOn
theorem Filter.InBasis.map_basis_inBasis' (map : OrderIsoOn (Set α) (Set β) B)
{F : Filter α} (F_basis : F.InBasis B) :
(Filter.InBasis.map_basis F B map.toFun).InBasis (map.toFun '' B) :=
by
apply map_basis_inBasis
assumption
exact map.toFun_doubleMonotone.monotoneOn
theorem Filter.InBasis.map_basis_inBasis₂ (map : OrderIsoOn (Set α) (Set β) B)
{F : Filter β} (F_basis : F.InBasis (map.toFun '' B)) :
(Filter.InBasis.map_basis F (map.toFun '' B) map.invFun).InBasis B :=
by
nth_rw 4 [<-OrderIsoOn.leftInv_image map]
rw [Function.comp_def, <-Set.image_image map.invFun]
apply map_basis_inBasis
assumption
exact map.invFun_doubleMonotone.monotoneOn
theorem Filter.InBasis.map_basis_le_inv (map : OrderIsoOn (Set α) (Set β) B)
{F : Filter α} (F_basis : F.InBasis B) {G : Filter β} (G_basis : G.InBasis (map.toFun '' B)) :
F ≤ Filter.InBasis.map_basis G (map.toFun '' B) map.invFun ↔ Filter.InBasis.map_basis F B map.toFun ≤ G :=
by
suffices ∀ map : OrderIsoOn (Set α) (Set β) B, ∀ F : Filter α, F.InBasis B → ∀ G : Filter β, G.InBasis (map.toFun '' B) →
F ≤ Filter.InBasis.map_basis G (map.toFun '' B) map.invFun →
Filter.InBasis.map_basis F B map.toFun ≤ G
by
constructor
· apply this
all_goals assumption
· intro mF_le_G
nth_rw 1 [<-map_basis_inv map F_basis]
apply map_basis_mono map
rw [map_basis_inv _ F_basis]
any_goals assumption
apply map_basis_inBasis₂
assumption
apply this
rw [map_basis_inv _ F_basis]
assumption
apply map_basis_inBasis'
apply map_basis_inBasis₂
assumption
rw [<-OrderIsoOn.inv_toFun, map_basis_le_iff]
· simp
rw [map_basis_inv']
exact mF_le_G
assumption
· apply map_basis_inBasis'
assumption
· simp
rw [map_basis_inv']
all_goals assumption
intro map F F_basis G G_basis F_le_mG
intro S S_in_G
let ⟨T, T_in_G, T_in_mB, T_ss_S⟩ := G_basis S S_in_G
let ⟨U, U_in_B, T_eq⟩ := T_in_mB
have mT_in_F : map.invFun T ∈ F := by
apply F_le_mG
rw [map_mem_map_basis_of_basis_set]
any_goals assumption
exact map.invFun_doubleMonotone
have U_in_F : U ∈ F := by
rw [<-T_eq] at mT_in_F
rw [map.leftInv_on U U_in_B] at mT_in_F
exact mT_in_F
apply Filter.mem_of_superset
· show map.toFun U ∈ map_basis F B map.toFun
rw [map_mem_map_basis_of_basis_set]
any_goals assumption
exact map.toFun_doubleMonotone
· rw [T_eq]
assumption
theorem Filter.InBasis.map_basis_le_inv' (map : OrderIsoOn (Set α) (Set β) B)
{F : Filter α} (F_basis : F.InBasis B) {G : Filter β} (G_basis : G.InBasis (map.toFun '' B)) :
G ≤ Filter.InBasis.map_basis F B map.toFun ↔ Filter.InBasis.map_basis G (map.toFun '' B) map.invFun ≤ F :=
by
nth_rw 1 [<-map.leftInv_image']
rw [<-map.inv_invFun, <-map.inv_toFun]
rw [<-map.leftInv_image', <-map.inv_toFun] at F_basis
nth_rw 1 [map.inv_invFun]
rw [Filter.InBasis.map_basis_le_inv _ G_basis F_basis]
simp
@[simp]
theorem Filter.InBasis.map_basis_toOrderIsoSet {M : Type*} (map : M) [EquivLike M α β]
{F : Filter α} (F_basis : F.InBasis B) :
Filter.InBasis.map_basis F B (EquivLike.toEquiv map).toOrderIsoSet =
F.map map :=
by
simp
ext S
rw [mem_map_basis _ _ F_basis, Filter.mem_map, F_basis.basis_hasBasis.mem_iff, basis]
swap
{
apply Monotone.monotoneOn
exact OrderHomClass.mono _
}
simp
rw [(by rfl : map ⁻¹' S = (EquivLike.toEquiv map) ⁻¹' S)]
rw [Set.preimage_equiv_eq_image_symm]
conv => {
lhs; congr; intro y
rw [Equiv.toOrderIsoSet_apply]
}
conv => {
rhs; congr; intro y
rw [<-Equiv.subset_image, and_assoc]
}
instance Filter.InBasis.order_bot : OrderBot { F : Filter α // F.InBasis B F = ⊥ } where
bot := ⟨⊥, by right; rfl ⟩
bot_le := by
intro ⟨F, _⟩
simp
theorem Filter.InBasis.inf {F₁ F₂ : Filter α}
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(F₁_basis : F₁.InBasis B) (F₂_basis : F₂.InBasis B) (nebot : Filter.NeBot (F₁ ⊓ F₂)):
Filter.InBasis (F₁ ⊓ F₂) B :=
by
intro T T_in_inf
let ⟨T₁, T₁_in_F₁, T₂, T₂_in_F₂, T_eq⟩ := Filter.mem_inf_iff.mp T_in_inf
let ⟨S₁, S₁_in_F₁, S₁_in_B, S₁_ss_T₁⟩ := F₁_basis T₁ T₁_in_F₁
let ⟨S₂, S₂_in_F₂, S₂_in_B, S₂_ss_T₂⟩ := F₂_basis T₂ T₂_in_F₂
let S := S₁ ∩ S₂
have S_in_inf : S ∈ F₁ ⊓ F₂ := by
rw [Filter.mem_inf_iff]
exact ⟨S₁, S₁_in_F₁, S₂, S₂_in_F₂, rfl⟩
use S
repeat' apply And.intro
· assumption
· apply basis_closed S₁ S₂ S₁_in_B S₂_in_B
apply Filter.nonempty_of_mem S_in_inf
· rw [T_eq]
exact Set.inter_subset_inter S₁_ss_T₁ S₂_ss_T₂
theorem Finset.Nonempty.induction {α : Type*} {p : ∀ (F : Finset α), F.Nonempty → Prop} [DecidableEq α] (initial : ∀ a : α, p {a} (Finset.singleton_nonempty a))
(insert : ∀ ⦃a : α⦄ {s : Finset α} (ne : s.Nonempty), a ∉ s → p s ne → p (insert a s) (Finset.insert_nonempty _ _)) : ∀ s, ∀ ne : s.Nonempty, p s ne :=
by
intro S S_nonempty
apply Finset.Nonempty.cons_induction
exact initial
intro a s a_notin_s s_nonempty p_rec
simp
apply insert <;> assumption
theorem Finset.Nonempty.induction_on' {α : Type*} {p : ∀ (F : Finset α), F.Nonempty → Prop} [DecidableEq α] {I : Finset α} (I_nonempty : I.Nonempty)
(initial : ∀ a : α, a ∈ I → p {a} (Finset.singleton_nonempty a))
(insert : ∀ ⦃a : α⦄ {s : Finset α} (ne : s.Nonempty), a ∈ I → a ∉ s → (s ⊆ I) → p s ne → p (insert a s) (Finset.insert_nonempty _ _)) :
p I I_nonempty :=
by
suffices ∀ (s : Finset α) (ne : Finset.Nonempty s), s ⊆ I → p s ne by
exact this I I_nonempty (subset_refl _)
apply Finset.Nonempty.induction
· simp only [singleton_subset_iff]
exact initial
· intro a s ne a_notin_s h_ind insert_subset
have ⟨a_in_I, s_ss_I⟩ := Finset.insert_subset_iff.mp insert_subset
specialize h_ind s_ss_I
apply insert <;> try assumption
theorem Filter.InBasis.sInf_finset_closed
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(I : Finset (Filter α))
(I_nonempty : Finset.Nonempty I)
(in_basis : ∀ (F : Filter α), F ∈ I → F.InBasis B)
(inf_nebot : Filter.NeBot (⨅ f ∈ I, f)) :
Filter.InBasis (sInf I) B := by
rw [sInf_eq_iInf]
have dec_eq: DecidableEq (Filter α) := Classical.typeDecidableEq _
apply Finset.Nonempty.induction_on' I_nonempty (p := fun i _ => InBasis (⨅ a ∈ i, a) B)
· simp
exact in_basis
· intro F I' _ F_in_I _ I'_ss_I I'_basis
simp only [Finset.mem_insert_coe]
rw [iInf_insert (s := I') (b := F)]
apply Filter.InBasis.inf basis_closed _ I'_basis
· simp only [<-Finset.mem_coe]
show NeBot (id F ⊓ ⨅ f ∈ (I' : Set (Filter α)), id f)
rw [<-iInf_insert]
apply Filter.neBot_of_le (f := ⨅ f ∈ I, f)
simp only [id_eq, <-Finset.mem_coe]
apply iInf_le_iInf_of_subset
exact Set.insert_subset F_in_I I'_ss_I
· exact in_basis _ F_in_I
theorem Filter.InBasis.sInf_closed
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(I : Set (Filter α))
(I_nonempty : I.Nonempty)
(in_basis : ∀ (F : Filter α), F ∈ I → F.InBasis B)
(inf_nebot : Filter.NeBot (⨅ f ∈ I, f)) :
Filter.InBasis (sInf I) B :=
by
rw [sInf_eq_iInf]
have iInf_I_eq := iInf_subtype (p := fun x => x ∈ I) (f := fun x => x.val)
simp only at iInf_I_eq
intro T T_in_sinf
rw [<-iInf_I_eq] at T_in_sinf
rw [Filter.mem_iInf_finite] at T_in_sinf
let ⟨S, T_in_inf⟩ := T_in_sinf
clear T_in_sinf
have dec_eq: DecidableEq (Filter α) := Classical.typeDecidableEq _
let S' := Finset.image (Subtype.val) S
have S'_eq : ⨅ i ∈ S, i.val = sInf S' := by
rw [sInf_eq_iInf]
simp
rw [iInf_subtype]
by_cases S_empty? : S.Nonempty
swap
{
rw [Finset.not_nonempty_iff_eq_empty] at S_empty?
rw [S_empty?] at T_in_inf
simp at T_in_inf
let ⟨F, F_in_I⟩ := I_nonempty
rw [T_in_inf]
simp
let ⟨U, U_in_F, U_in_B, _⟩ := in_basis F F_in_I Set.univ Filter.univ_mem
use U
constructor
· rw [<-iInf_I_eq]
apply Filter.mem_iInf_of_mem ⟨F, F_in_I⟩
exact U_in_F
· assumption
}
have S_basis : Filter.InBasis (⨅ i ∈ S, i.val) B := by
rw [S'_eq]
apply Filter.InBasis.sInf_finset_closed basis_closed
· simp
assumption
· unfold_let
simp only [Finset.mem_image]
intro F ⟨F', _, F'_eq⟩
apply in_basis
rw [<-F'_eq]
exact Subtype.mem F'
· simp only [<-Finset.mem_coe]
apply Filter.neBot_of_le (f := ⨅ f ∈ I, f)
apply iInf_le_iInf_of_subset
simp
have S_inf_le_I_inf : ⨅ i ∈ I, i ≤ ⨅ i ∈ S, i.val := by
rw [S'_eq, sInf_eq_iInf]
apply iInf_le_iInf_of_subset
simp
let ⟨U, U_in_inf, U_in_B, U_ss_T⟩ := S_basis T T_in_inf
use U
repeat' apply And.intro
apply S_inf_le_I_inf
all_goals assumption
theorem Filter.InBasis.is_atomic
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
: IsAtomic { F : Filter α // F.InBasis B F = ⊥ } :=
by
by_cases α_nonempty? : Nonempty α
swap
{
rw [not_nonempty_iff] at α_nonempty?
constructor
intro ⟨F, _⟩
left
simp
exact filter_eq_bot_of_isEmpty F
}
apply IsAtomic.of_isChain_bounded
intro ch ch_chain ch_nonempty bot_notin_ch
let ch' : Set (Filter α) := { F : Filter α | ∃ F' ∈ ch, F'.val = F }
have ch'_chain : IsChain (fun x y => x ≥ y) ch' := by
intro f f_in_ch' g g_in_ch' f_ne_g
let ⟨f', f'_in_ch, f'_eq⟩ := f_in_ch'
let ⟨g', g'_in_ch, g'_eq⟩ := g_in_ch'
rw [<-f'_eq, <-g'_eq]
simp
have f'_ne_g' : f' ≠ g' := by
intro eq
rw [eq] at f'_eq
rw [<-f'_eq, <-g'_eq] at f_ne_g
exact f_ne_g rfl
symm at f'_ne_g'
apply ch_chain <;> assumption
have bot_notin_ch' : ⊥ ∉ ch' := by
intro ⟨f, f_in_ch, f_eq_bot⟩
simp at f_eq_bot
rw [f_eq_bot] at f_in_ch
exact bot_notin_ch f_in_ch
let sch := sInf ch'
have sch_neBot : Filter.NeBot sch := by
apply Filter.sInf_neBot_of_directed
apply ch'_chain.directedOn
exact bot_notin_ch'
have sch_basis : InBasis sch B := by
apply Filter.InBasis.sInf_closed basis_closed
· let ⟨x, x_in_ch⟩ := ch_nonempty
use x
simp only [Subtype.exists, exists_and_right, exists_eq_right, Set.mem_setOf_eq,
Subtype.coe_eta, or_true, exists_prop]
exact ⟨x.prop, x_in_ch⟩
· intro F F_in_ch
simp at F_in_ch
let ⟨F_basis, F_in_ch⟩ := F_in_ch
apply F_basis.elim id
intro F_eq_bot
exfalso
simp [F_eq_bot] at F_in_ch
exact bot_notin_ch F_in_ch
· rw [<-sInf_eq_iInf]
exact sch_neBot
let sch' : { F // InBasis F B F = ⊥ } := ⟨sch, Or.intro_left _ sch_basis⟩
have sch'_ne_bot : sch' ≠ ⊥ := by
unfold_let
intro eq_bot
rw [Subtype.mk_eq_bot_iff] at eq_bot
apply sch_neBot.ne
exact eq_bot
right; rfl
use sch'
use sch'_ne_bot
unfold lowerBounds
simp
intro F F_basis F_in_ch
apply sInf_le
simp
use F_basis
/--
This is a formulation for prefilters in a basis that are ultra.
It is a weaker statement than regular ultrafilters,
but it allows for some nice properties, like the equivalence of cluster points and neighborhoods.
--/
structure UltrafilterInBasis {α : Type} (B : Set (Set α)) :=
filter : Filter α
in_basis : Filter.InBasis filter B
ne_bot : Filter.NeBot filter
ultra : ∀ (F' : Filter α), F'.InBasis B → F'.NeBot → F' ≤ filter → filter ≤ F'
instance : CoeOut (@UltrafilterInBasis α B) (Filter α) where
coe := fun U => U.filter
instance : Membership (Set α) (UltrafilterInBasis B) where
mem := fun s U => s ∈ U.filter
@[simp]
theorem UltrafilterInBasis.mem_coe (U : UltrafilterInBasis B) (S : Set α):
S ∈ U.filter ↔ S ∈ U := by rfl
instance (U : UltrafilterInBasis B): Filter.NeBot (U.filter) where
ne' := U.ne_bot.ne
theorem UltrafilterInBasis.exists_le {α: Type _} {F : Filter α} {B : Set (Set α)}
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(F_basis : Filter.InBasis F B) (F_nebot : Filter.NeBot F) :
∃ U : UltrafilterInBasis B, U.filter ≤ F :=
by
have atomic := Filter.InBasis.is_atomic basis_closed
let ⟨⟨U, U_basis⟩, U_atom, U_le_F⟩ := (atomic.eq_bot_or_exists_atom_le ⟨F, Or.intro_left _ F_basis⟩).resolve_left (by simp; exact F_nebot.ne)
have U_neBot : Filter.NeBot U := by
constructor
have U_atom := U_atom.left
simp at U_atom
exact U_atom
have U_basis := U_basis.resolve_right U_neBot.ne
simp at U_le_F
have U_ultra : ∀ (F' : Filter α), F'.InBasis B → F'.NeBot → F' ≤ U → U ≤ F' := by
intro F' F'_basis F'_neBot F'_le
have U_atom := U_atom.right
simp at U_atom
cases le_iff_lt_or_eq.mp F'_le with
| inl F'_lt_U =>
exfalso
apply F'_neBot.ne
apply U_atom
left
all_goals assumption
| inr F'_eq_U =>
symm at F'_eq_U
exact le_of_eq F'_eq_U
use ⟨U, U_basis, U_neBot, U_ultra⟩
noncomputable def UltrafilterInBasis.of {α: Type _} {F : Filter α} {B : Set (Set α)}
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(F_basis : Filter.InBasis F B) [F_neBot : Filter.NeBot F]:
UltrafilterInBasis B := Exists.choose $ UltrafilterInBasis.exists_le basis_closed F_basis F_neBot
theorem UltrafilterInBasis.of_le {α: Type _} {F : Filter α} {B : Set (Set α)}
(basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(F_basis : Filter.InBasis F B) [F_neBot : Filter.NeBot F]:
UltrafilterInBasis.of basis_closed F_basis ≤ F :=
by
exact Exists.choose_spec $ UltrafilterInBasis.exists_le basis_closed F_basis F_neBot
theorem UltrafilterInBasis.coe_in_basis (U : UltrafilterInBasis B) : Filter.InBasis U B := U.in_basis
theorem UltrafilterInBasis.map_basis_ultra {β : Type _}
(empty_notin_B : ∅ ∉ B)
(map : OrderIsoOn (Set α) (Set β) B)
(U : UltrafilterInBasis B) :
∀ (F : Filter β), F.InBasis (map.toFun '' B) → F.NeBot →
F ≤ Filter.InBasis.map_basis U B map → Filter.InBasis.map_basis U B map ≤ F :=
by
have α_nonempty: Nonempty α := by
by_contra α_trivial
rw [not_nonempty_iff] at α_trivial
apply U.ne_bot.ne
exact Filter.filter_eq_bot_of_isEmpty U.filter
intro F F_in_basis F_neBot F_le_map
intro S S_in_F
have U_le_mF : U ≤ Filter.InBasis.map_basis F (map.toFun '' B) map.invFun := by
apply U.ultra
apply Filter.InBasis.map_basis_inBasis₂
· assumption
· apply Filter.InBasis.map_basis_neBot_of_neBot F_in_basis
exact map.invFun_doubleMonotone.monotoneOn
intro S ⟨T, T_in_B, T_eq⟩ _
rw [<-T_eq, map.leftInv_on T T_in_B]
rw [Set.nonempty_iff_ne_empty]
intro T_empty
exact empty_notin_B (T_empty ▸ T_in_B)
· rw [Filter.InBasis.map_basis_le_inv' map U.in_basis F_in_basis] at F_le_map
exact F_le_map
rw [Filter.InBasis.mem_map_basis map.toFun map.toFun_doubleMonotone.monotoneOn U.in_basis]
let ⟨T, T_in_F, T_in_mB, T_ss_S⟩ := F_in_basis S S_in_F
use map.invFun T
repeat' apply And.intro
· apply U_le_mF
rw [Filter.InBasis.map_mem_map_basis_of_basis_set]
any_goals assumption
exact map.invFun_doubleMonotone
· apply map.mem_toFun_image
assumption
· rw [map.rightInv_on T T_in_mB]
exact T_ss_S
def UltrafilterInBasis.map_basis {β : Type _}
(empty_notin_B : ∅ ∉ B)
(map : OrderIsoOn (Set α) (Set β) B)
(empty_notin_mB : ∅ ∉ map.toFun '' B)
(U : UltrafilterInBasis B) :
UltrafilterInBasis (map.toFun '' B)
where
filter := Filter.InBasis.map_basis U.filter B map.toFun
in_basis := U.in_basis.map_basis_inBasis' map
ne_bot := by
have β_nonempty : Nonempty β := by
by_contra β_trivial
rw [not_nonempty_iff] at β_trivial
apply empty_notin_mB
rw [Subsingleton.mem_iff_nonempty]
simp
let ⟨T, _, T_in_B, _⟩ := U.in_basis _ (Filter.univ_mem)
use T
apply Filter.InBasis.map_basis_neBot_of_neBot U.in_basis _ map.toFun_doubleMonotone.monotoneOn
intro S S_in_B _
by_contra empty
rw [Set.not_nonempty_iff_eq_empty] at empty
apply empty_notin_mB
use S
ultra := U.map_basis_ultra empty_notin_B map
@[simp]
theorem UltrafilterInBasis.mem_map_basis {β : Type _}
(empty_notin_B : ∅ ∉ B)
(map : OrderIsoOn (Set α) (Set β) B)
(empty_notin_mB : ∅ ∉ map.toFun '' B)
(U : UltrafilterInBasis B)
(S : Set β):
S ∈ U.map_basis empty_notin_B map empty_notin_mB ↔ S ∈ Filter.InBasis.map_basis U.filter B map.toFun :=
by
rw [map_basis]
rfl
@[simp]
theorem UltrafilterInBasis.map_basis_filter {β : Type _}
(empty_notin_B : ∅ ∉ B)
(map : OrderIsoOn (Set α) (Set β) B)
(empty_notin_mB : ∅ ∉ map.toFun '' B)
(U : UltrafilterInBasis B):
(U.map_basis empty_notin_B map empty_notin_mB).filter = Filter.InBasis.map_basis U.filter B map.toFun :=
by
rw [map_basis]
/-
theorem compl_not_mem_iff : sᶜ ∉ f ↔ s ∈ f :=
⟨fun hsc =>
le_principal_iff.1 <|
f.le_of_inf_neBot ⟨fun h => hsc <| mem_of_eq_bot <| by rwa [compl_compl]⟩,
compl_not_mem⟩
-/
theorem UltrafilterInBasis.unique (U : UltrafilterInBasis B) {F : Filter α} [Filter.NeBot F] (F_in_basis : F.InBasis B) :
F ≤ U.filter → U.filter = F :=
by
intro F_le_U
apply le_antisymm
apply U.ultra
all_goals assumption
theorem UltrafilterInBasis.eq_of_le (U U' : UltrafilterInBasis B) :
U.filter ≤ U'.filter → U = U' :=
by
intro U_le_U'
symm
rw [mk.injEq]
exact unique _ U.in_basis U_le_U'
theorem UltrafilterInBasis.le_of_basis_sets (U U' : UltrafilterInBasis B) :
(∀ S : Set α, S ∈ B → S ∈ U' → S ∈ U) → U.filter ≤ U'.filter :=
by
intro h
intro S S_in_U'
let ⟨T, T_in_B, T_in_U', T_ss_S⟩ := U'.in_basis _ S_in_U'
apply Filter.mem_of_superset _ T_ss_S
apply h <;> assumption
theorem UltrafilterInBasis.le_of_inf_neBot (U : UltrafilterInBasis B)
(B_closed : ∀ (b1 b2 : Set α), b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
{F : Filter α} (F_in_basis : F.InBasis B)
(inf_neBot : Filter.NeBot (U.filter ⊓ F)) : U.filter ≤ F :=
by
apply le_of_inf_eq
symm
apply U.unique
· exact Filter.InBasis.inf B_closed U.in_basis F_in_basis inf_neBot
· exact inf_le_left
theorem UltrafilterInBasis.mem_of_compl_not_mem (U : UltrafilterInBasis B)
(B_closed : ∀ (b1 b2 : Set α), b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
{S : Set α} (S_in_B : S ∈ B):
Sᶜ ∉ U → S ∈ U :=
by
intro sc_notin_U
rw [<-mem_coe, <-Filter.le_principal_iff]
apply le_of_inf_neBot U B_closed
· exact Filter.InBasis.principal S_in_B
· constructor
intro eq_bot
apply sc_notin_U
apply Filter.mem_of_eq_bot
rwa [compl_compl]
theorem UltrafilterInBasis.mem_or_compl_mem (U : UltrafilterInBasis B)
(B_closed : ∀ (b1 b2 : Set α), b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
{S : Set α} (S_in_B : S ∈ B):
Sᶜ ∈ U S ∈ U :=
by
by_cases S_in_U? : S ∈ U
right; exact S_in_U?
left
by_contra Sc_notin_U
apply (U.mem_of_compl_not_mem B_closed S_in_B) at Sc_notin_U
exact S_in_U? Sc_notin_U
theorem UltrafilterInBasis.clusterPt_iff_le_nhds [TopologicalSpace α]
(U : UltrafilterInBasis B)
(B_basis : TopologicalSpace.IsTopologicalBasis B)
(B_closed : ∀ (b1 b2 : Set α), b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
(p : α) :
ClusterPt p U.filter ↔ U.filter ≤ nhds p :=
by
constructor
swap
exact fun h => ClusterPt.of_le_nhds h
intro p_clusterPt
intro S S_in_nhds
let ⟨T, T_in_B, p_in_T, T_ss_S⟩ := B_basis.mem_nhds_iff.mp S_in_nhds
have T_in_nhds : T ∈ nhds p := by
rw [B_basis.mem_nhds_iff]
use T
apply Filter.mem_of_superset _ T_ss_S
cases U.mem_or_compl_mem B_closed T_in_B with
| inr res => exact res
| inl Tc_in_U =>
exfalso
rw [clusterPt_iff] at p_clusterPt
specialize p_clusterPt T_in_nhds Tc_in_U
rw [Set.inter_compl_self] at p_clusterPt
exact Set.not_nonempty_empty p_clusterPt
/--
Allows substituting the expression for the basis in the type.
--/
def UltrafilterInBasis.cast (U : UltrafilterInBasis B) {C : Set (Set α)} (B_eq_C : B = C) :
UltrafilterInBasis C where
filter := U.filter
ne_bot := U.ne_bot
in_basis := U.in_basis.mono (subset_of_eq B_eq_C)
ultra := by
nth_rw 1 [<-B_eq_C]
exact U.ultra
@[simp]
theorem UltrafilterInBasis.mem_cast (U : UltrafilterInBasis B) {C : Set (Set α)} (B_eq_C : B = C) (S : Set α):
S ∈ U.cast B_eq_C ↔ S ∈ U := by rw [cast]; rfl
@[simp]
theorem UltrafilterInBasis.le_cast (U : UltrafilterInBasis B) {C : Set (Set α)} (B_eq_C : B = C) (F : Filter α):
F ≤ U.cast B_eq_C ↔ F ≤ U := by rw [cast]
@[simp]
theorem UltrafilterInBasis.cast_le (U : UltrafilterInBasis B) {C : Set (Set α)} (B_eq_C : B = C) (F : Filter α):
U.cast B_eq_C ≤ F ↔ U ≤ F := by rw [cast]
@[simp]
theorem UltrafilterInBasis.cast_filter (U : UltrafilterInBasis B) {C : Set (Set α)} (B_eq_C : B = C):
(U.cast B_eq_C).filter = U.filter := by rw [cast]