You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/AlgebraicDisjointness.lean

441 lines
14 KiB

import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.Subgroup.Actions
import Mathlib.GroupTheory.Commutator
import Mathlib.Topology.Basic
import Mathlib.Topology.Algebra.ConstMulAction
import Mathlib.Data.Fintype.Perm
import Mathlib.Tactic.FinCases
import Mathlib.Tactic.IntervalCases
import Rubin.RigidStabilizer
import Rubin.SmulImage
import Rubin.Topology
import Rubin.FaithfulAction
import Rubin.Period
import Rubin.LocallyDense
namespace Rubin
structure AlgebraicallyDisjointElem {G : Type _} [Group G] (f g h : G) :=
non_commute: ¬Commute f h
fst : G
snd : G
fst_commute : Commute fst g
snd_commute : Commute snd g
comm_elem_commute : Commute ⁅fst, ⁅snd, h⁆⁆ g
comm_elem_nontrivial : ⁅fst, ⁅snd, h⁆⁆ ≠ 1
namespace AlgebraicallyDisjointElem
def comm_elem {G : Type _} [Group G] {f g h : G} (disj_elem : AlgebraicallyDisjointElem f g h) : G :=
⁅disj_elem.fst, ⁅disj_elem.snd, h⁆⁆
@[simp]
theorem comm_elem_eq {G : Type _} [Group G] {f g h : G} (disj_elem : AlgebraicallyDisjointElem f g h) :
disj_elem.comm_elem = ⁅disj_elem.fst, ⁅disj_elem.snd, h⁆⁆ :=
by
unfold comm_elem
simp
end AlgebraicallyDisjointElem
-- Also known as `η_G(f)`.
/--
A pair (f, g) is said to be "algebraically disjoint" if it can produce an instance of
[`AlgebraicallyDisjointElem`] for any element `h ∈ G` such that `f` and `h` don't commute.
In other words, `g` is algebraically disjoint from `f` if `∀ h ∈ G`, with `⁅f, h⁆ ≠ 1`,
there exists a pair `f₁, f₂ ∈ Centralizer(g, G)`,
so that `⁅f₁, ⁅f₂, h⁆⁆` is a nontrivial element of `Centralizer(g, G)`.
Here the definition of `k ∈ Centralizer(g, G)` is directly unrolled as `Commute k g`.
This is a slightly weaker proposition than plain disjointness,
but it is easier to derive from the hypothesis of Rubin's theorem.
-/
def AlgebraicallyDisjoint {G : Type _} [Group G] (f g : G) :=
∀ (h : G), ¬Commute f h → AlgebraicallyDisjointElem f g h
theorem AlgebraicallyDisjoint_mk {G : Type _} [Group G] {f g : G}
(mk_thm : ∀ h : G, ¬Commute f h →
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
) : AlgebraicallyDisjoint f g :=
fun (h : G) (nc : ¬Commute f h) => {
non_commute := nc,
fst := (mk_thm h nc).choose
snd := (mk_thm h nc).choose_spec.choose
fst_commute := (mk_thm h nc).choose_spec.choose_spec.left
snd_commute := (mk_thm h nc).choose_spec.choose_spec.right.left
comm_elem_commute := (mk_thm h nc).choose_spec.choose_spec.right.right.left
comm_elem_nontrivial := by
exact (mk_thm h nc).choose_spec.choose_spec.right.right.right
}
/--
This definition simply wraps `AlgebraicallyDisjoint` as a `Prop`.
It is equivalent to it, although since `AlgebraicallyDisjoint` isn't a `Prop`,
an `↔` (iff) statement joining the two cannot be written.
You should consider using it when proving `↔`/`∧` kinds of theorems, or when tools like `cases` are needed,
as the base `AlgebraicallyDisjoint` isn't a `Prop` and won't work with those.
The two `Coe` and `CoeFn` instances provided around this type make it essentially transparent —
you can use an instance of `AlgebraicallyDisjoint` in place of a `IsAlgebraicallyDisjoint` and vice-versa.
You might need to add the odd `↑` (coe) operator to make Lean happy.
--/
def IsAlgebraicallyDisjoint {G : Type _} [Group G] (f g : G): Prop :=
∀ (h : G), ¬Commute f h → ∃ (f₁ f₂ : G), ∃ (elem : AlgebraicallyDisjointElem f g h), elem.fst = f₁ ∧ elem.snd = f₂
namespace IsAlgebraicallyDisjoint
variable {G : Type _} [Group G]
variable {f g: G}
noncomputable def elim
(is_alg_disj: IsAlgebraicallyDisjoint f g) :
AlgebraicallyDisjoint f g :=
fun h nc => (is_alg_disj h nc).choose_spec.choose_spec.choose
def mk (alg_disj : AlgebraicallyDisjoint f g) : IsAlgebraicallyDisjoint f g :=
fun h nc =>
let elem := alg_disj h nc
elem.fst,
elem.snd,
elem,
rfl,
rfl
noncomputable instance coeFnAlgebraicallyDisjoint : CoeFun
(IsAlgebraicallyDisjoint f g)
(fun _ => AlgebraicallyDisjoint f g) where
coe := elim
instance coeAlgebraicallyDisjoint : Coe (AlgebraicallyDisjoint f g) (IsAlgebraicallyDisjoint f g) where
coe := mk
end IsAlgebraicallyDisjoint
-- TODO: find a better home for these lemmas
variable {G α : Type _}
variable [Group G]
variable [TopologicalSpace α]
variable [MulAction G α]
variable [ContinuousConstSMul G α]
variable [FaithfulSMul G α]
-- Kind of a boring lemma but okay
lemma rewrite_Union (f : Fin 2 × Fin 2 → Set α) :
((i : Fin 2 × Fin 2), f i) = (f (0,0) f (0,1)) (f (1,0) f (1,1)) :=
by
ext x
simp only [Set.mem_iUnion, Set.mem_union]
constructor
· rewrite [forall_exists_index]
intro i
fin_cases i
<;> simp only [Fin.zero_eta, Fin.mk_one]
<;> intro h
<;> simp only [h, true_or, or_true]
· rintro ((h|h)|(h|h)) <;> exact ⟨_, h⟩
lemma smul_inj_moves {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
((f j)⁻¹ * f i) • x ≠ x := by
by_contra h
apply i_ne_j
apply f_smul_inj
group_action
group at h
exact h
def smul_inj_nbhd {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
Set α :=
(disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose
lemma smul_inj_nbhd_open {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
IsOpen (smul_inj_nbhd i_ne_j f_smul_inj) :=
by
exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.1
lemma smul_inj_nbhd_mem {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
x ∈ (smul_inj_nbhd i_ne_j f_smul_inj) :=
by
exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.1
lemma smul_inj_nbhd_disjoint {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
Disjoint
(smul_inj_nbhd i_ne_j f_smul_inj)
((f j)⁻¹ * f i •'' (smul_inj_nbhd i_ne_j f_smul_inj)) :=
by
exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.2
lemma disjoint_nbhd_fin {ι : Type*} [Fintype ι] [T2Space α]
{f : ι → G} {x : α} (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)):
∃ U : Set α,
IsOpen U ∧ x ∈ U ∧ (∀ (i j : ι), i ≠ j → Disjoint (f i •'' U) (f j •'' U)) :=
by
let ι₂ := { p : ι × ι | p.1 ≠ p.2 }
let U := ⋂(p : ι₂), smul_inj_nbhd p.prop f_smul_inj
use U
repeat' apply And.intro
· apply isOpen_iInter_of_finite
intro ⟨⟨i, j⟩, i_ne_j⟩
apply smul_inj_nbhd_open
· apply Set.mem_iInter.mpr
intro ⟨⟨i, j⟩, i_ne_j⟩
apply smul_inj_nbhd_mem
· intro i j i_ne_j
-- We transform `Disjoint (f i •'' U) (f j •'' U)` into `Disjoint N ((f i)⁻¹ * f j •'' N)`
let N := smul_inj_nbhd i_ne_j f_smul_inj
have U_subset_N : U ⊆ N := Set.iInter_subset
(fun (⟨⟨i, j⟩, i_ne_j⟩ : ι₂) => (smul_inj_nbhd i_ne_j f_smul_inj))
⟨⟨i, j⟩, i_ne_j⟩
rw [disjoint_comm, smulImage_disjoint_mul]
apply Set.disjoint_of_subset U_subset_N
· apply smulImage_mono
exact U_subset_N
· exact smul_inj_nbhd_disjoint i_ne_j f_smul_inj
lemma moves_inj {g : G} {x : α} {n : } (period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g^k • x ≠ x) :
Function.Injective (fun (i : Fin n) => g^(i : ) • x) :=
by
intro a b same_img
by_contra a_ne_b
let abs_diff := |(a : ) - (b : )|
apply period_ge_n abs_diff _ _ _
{
show 1 ≤ abs_diff
unfold_let
rw [<-zero_add 1, Int.add_one_le_iff]
apply abs_pos.mpr
apply sub_ne_zero.mpr
simp
apply Fin.vne_of_ne
apply a_ne_b
}
{
show abs_diff < (n : )
apply abs_lt.mpr
constructor
· rw [<-zero_sub]
apply Int.sub_lt_sub_of_le_of_lt <;> simp
· rw [<-sub_zero (n : )]
apply Int.sub_lt_sub_of_lt_of_le <;> simp
}
{
show g^abs_diff • x = x
simp at same_img
group_action at same_img
rw [neg_add_eq_sub] at same_img
cases abs_cases ((a : ) - (b : )) with
| inl h =>
unfold_let
rw [h.1]
exact same_img
| inr h =>
unfold_let
rw [h.1]
rw [smul_eq_iff_eq_inv_smul]
group
symm
exact same_img
}
-- Note: this can be strengthened to `k ≥ 0`
lemma natAbs_eq_of_pos' (k : ) (k_ge_one : k ≥ 1) : k = k.natAbs := by
cases Int.natAbs_eq k with
| inl _ => assumption
| inr h =>
exfalso
have k_lt_one : k < 1 := by
calc
k ≤ 0 := by
rw [h]
apply nonpos_of_neg_nonneg
rw [neg_neg]
apply Int.ofNat_nonneg
_ < 1 := by norm_num
exact ((lt_iff_not_ge _ _).mp k_lt_one) k_ge_one
lemma period_ge_n_cast {g : G} {x : α} {n : } :
(∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) →
(∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) :=
by
intro period_ge_n'
intro k one_le_k k_lt_n
have one_le_abs_k : 1 ≤ k.natAbs := by
rw [<-Nat.cast_le (α := )]
norm_num
calc
1 ≤ k := one_le_k
_ ≤ |k| := le_abs_self k
have abs_k_lt_n : k.natAbs < n := by
rw [<-Nat.cast_lt (α := )]
norm_num
calc
|k| = k := abs_of_pos one_le_k
_ < n := k_lt_n
have res := period_ge_n' k.natAbs one_le_abs_k abs_k_lt_n
rw [<-zpow_ofNat, Int.coe_natAbs, abs_of_pos _] at res
exact res
exact one_le_k
instance {g : G} {x : α} {n : } :
Coe
(∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x)
(∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x)
where
coe := period_ge_n_cast
-- TODO: remove the unneeded `n` parameter
theorem smul_injective_within_period {g : G} {p : α} {n : }
(period_eq_n : Period.period p g = n) :
Function.Injective (fun (i : Fin n) => g ^ (i : ) • p) :=
by
have zpow_fix : (fun (i : Fin n) => g ^ (i : ) • p) = (fun (i : Fin n) => g ^ (i : ) • p) := by
ext x
simp
rw [zpow_fix]
apply moves_inj
intro k one_le_k k_lt_n
apply Period.moves_within_period'
exact one_le_k
rw [period_eq_n]
exact k_lt_n
#align moves_inj_period Rubin.smul_injective_within_period
/-
The algebraic centralizer (and its associated basis) allow for a purely group-theoretic construction of the
`RegularSupport` sets.
They are defined as the centralizers of the subgroups `{g^12 | g ∈ G ∧ AlgebraicallyDisjoint f g}`
-/
section AlgebraicCentralizer
variable {G : Type _}
variable [Group G]
-- TODO: prove this is a subgroup?
-- This is referred to as `ξ_G^12(f)`
def AlgebraicSubgroup (f : G) : Set G :=
(fun g : G => g^12) '' { g : G | IsAlgebraicallyDisjoint f g }
def AlgebraicCentralizer (f : G) : Subgroup G :=
Subgroup.centralizer (AlgebraicSubgroup f)
theorem AlgebraicSubgroup.conj (f g : G) :
(fun h => g * h * g⁻¹) '' AlgebraicSubgroup f = AlgebraicSubgroup (g * f * g⁻¹) :=
by
unfold AlgebraicSubgroup
rw [Set.image_image]
have gxg12_eq : ∀ x : G, g * x^12 * g⁻¹ = (g * x * g⁻¹)^12 := by
simp
simp only [gxg12_eq]
ext x
sorry
-- unfold IsAlgebraicallyDisjoint
@[simp]
theorem AlgebraicCentralizer.conj (f g : G) :
(fun h => g * h * g⁻¹) '' AlgebraicCentralizer f = AlgebraicCentralizer (g * f * g⁻¹) :=
by
unfold AlgebraicCentralizer
ext x
simp [Subgroup.mem_centralizer_iff]
constructor
· intro ⟨y, ⟨x_comm, x_eq⟩⟩
intro h h_in_alg
rw [<-AlgebraicSubgroup.conj] at h_in_alg
simp at h_in_alg
let ⟨i, i_in_alg, gig_eq_h⟩ := h_in_alg
specialize x_comm i i_in_alg
rw [<-gig_eq_h, <-x_eq]
group
rw [mul_assoc _ i, x_comm, <-mul_assoc]
· intro x_comm
use g⁻¹ * x * g
group
simp
intro h h_in_alg
simp [<-AlgebraicSubgroup.conj] at x_comm
specialize x_comm h h_in_alg
have h₁ : g⁻¹ * x * g * h = g⁻¹ * (g * h * g⁻¹ * x) * g := by
rw [x_comm]
group
rw [h₁]
group
/--
Finite intersections of [`AlgebraicCentralizer`].
--/
def AlgebraicCentralizerInter₀ (S : Finset G) : Subgroup G :=
⨅ (g ∈ S), AlgebraicCentralizer g
structure AlgebraicCentralizerBasis₀ (G: Type _) [Group G] where
seed : Finset G
val_ne_bot : AlgebraicCentralizerInter₀ seed ≠ ⊥
def AlgebraicCentralizerBasis₀.val (B : AlgebraicCentralizerBasis₀ G) : Subgroup G :=
AlgebraicCentralizerInter₀ B.seed
theorem AlgebraicCentralizerBasis₀.val_def (B : AlgebraicCentralizerBasis₀ G) :
B.val = AlgebraicCentralizerInter₀ B.seed := rfl
def AlgebraicCentralizerBasis (G : Type _) [Group G] : Set (Subgroup G) :=
{ H.val | H : AlgebraicCentralizerBasis₀ G }
theorem AlgebraicCentralizerBasis.mem_iff (H : Subgroup G) :
H ∈ AlgebraicCentralizerBasis G ↔ ∃ B : AlgebraicCentralizerBasis₀ G, B.val = H := by rfl
theorem AlgebraicCentralizerBasis.mem_iff' (H : Subgroup G)
(H_ne_bot : H ≠ ⊥) :
H ∈ AlgebraicCentralizerBasis G ↔ ∃ seed : Finset G, AlgebraicCentralizerInter₀ seed = H :=
by
rw [mem_iff]
constructor
· intro ⟨B, B_eq⟩
use B.seed
rw [AlgebraicCentralizerBasis₀.val_def] at B_eq
exact B_eq
· intro ⟨seed, seed_eq⟩
let B := AlgebraicCentralizerInter₀ seed
have val_ne_bot : B ≠ ⊥ := by
unfold_let
rw [seed_eq]
exact H_ne_bot
use ⟨seed, val_ne_bot⟩
rw [<-seed_eq]
rfl
end AlgebraicCentralizer
end Rubin