You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/InteriorClosure.lean

259 lines
7.8 KiB

import Mathlib.Topology.Basic
import Mathlib.Topology.Separation
import Rubin.SmulImage
namespace Rubin
variable {α : Type _}
variable [TopologicalSpace α]
/--
Defines a kind of "regularization" transformation made to sets,
by calling `closure` followed by `interior` on those sets.
A set is then said to be [`Regular`] if the InteriorClosure does not modify it.
--/
def InteriorClosure (U : Set α) : Set α :=
interior (closure U)
#align interior_closure Rubin.InteriorClosure
@[simp]
theorem InteriorClosure.def (U : Set α) : InteriorClosure U = interior (closure U) :=
by simp [InteriorClosure]
@[simp]
theorem InteriorClosure.fdef : InteriorClosure = (interior ∘ (closure (α := α))) := by ext; simp
/--
A set `U` is said to be regular if the interior of the closure of `U` is equal to `U`.
Notably, a regular set is also open, and the interior of a regular set is equal to itself.
--/
def Regular (U : Set α) : Prop :=
InteriorClosure U = U
@[simp]
theorem Regular.def (U : Set α) : Regular U ↔ interior (closure U) = U :=
by simp [Regular]
#align set.is_regular_def Rubin.Regular.def
@[simp]
theorem Regular.eq {U : Set α} (U_reg : Regular U) : interior (closure U) = U :=
(Regular.def U).mp U_reg
instance Regular.instCoe {U : Set α} : Coe (Regular U) (interior (closure U) = U) where
coe := Regular.eq
/-- From this, the set of regular sets is the set of regular *open* sets. --/
theorem regular_open (U : Set α) : Regular U → IsOpen U :=
by
intro h_reg
rw [<-h_reg]
simp
theorem Regular.isOpen {U : Set α} (U_regular : Regular U): IsOpen U := regular_open _ U_regular
theorem regular_interior {U : Set α} : Regular U → interior U = U :=
by
intro h_reg
rw [<-h_reg]
simp
theorem interiorClosure_open (U : Set α) : IsOpen (InteriorClosure U) := by simp
#align is_open_interior_closure Rubin.interiorClosure_open
theorem interiorClosure_subset {U : Set α} :
IsOpen U → U ⊆ InteriorClosure U :=
by
intro h
apply subset_trans
exact subset_interior_iff_isOpen.mpr h
apply interior_mono
exact subset_closure
#align is_open.interior_closure_subset Rubin.interiorClosure_subset
theorem interiorClosure_regular (U : Set α) : Regular (InteriorClosure U) :=
by
apply Set.eq_of_subset_of_subset <;> unfold InteriorClosure
{
apply interior_mono
nth_rw 2 [<-closure_closure (s := U)]
apply closure_mono
exact interior_subset
}
{
nth_rw 1 [<-interior_interior]
apply interior_mono
exact subset_closure
}
#align regular_interior_closure Rubin.interiorClosure_regular
theorem interiorClosure_mono (U V : Set α) :
U ⊆ V → InteriorClosure U ⊆ InteriorClosure V
:= interior_mono ∘ closure_mono
#align interior_closure_mono Rubin.interiorClosure_mono
theorem monotone_interiorClosure : Monotone (InteriorClosure (α := α))
:= fun a b =>
interiorClosure_mono a b
theorem interiorClosure_subset_of_regular {U V : Set α} (U_ss_V : U ⊆ V) (V_regular : Regular V) :
InteriorClosure U ⊆ V :=
by
rw [<-V_regular]
apply interiorClosure_mono
assumption
theorem compl_closure_regular_of_open {S : Set α} (S_open : IsOpen S) : Regular (closure S)ᶜ := by
apply Set.eq_of_subset_of_subset
· simp
apply closure_mono
rw [IsOpen.subset_interior_iff S_open]
exact subset_closure
· apply interiorClosure_subset
simp
@[simp]
theorem interiorClosure_closure {S : Set α} (S_open : IsOpen S) : closure (InteriorClosure S) = closure S :=
by
apply Set.eq_of_subset_of_subset
· simp
rw [<-Set.compl_subset_compl]
rw [<-(compl_closure_regular_of_open S_open)]
simp
rfl
· apply closure_mono
exact interiorClosure_subset S_open
@[simp]
theorem interiorClosure_interior {S : Set α} : interior (InteriorClosure S) = (InteriorClosure S) :=
regular_interior (interiorClosure_regular S)
theorem disjoint_interiorClosure_left {U V : Set α} (V_open : IsOpen V) :
Disjoint U V → Disjoint (InteriorClosure U) V :=
by
intro disj
apply Set.disjoint_of_subset_left interior_subset
exact Disjoint.closure_left disj V_open
theorem disjoint_interiorClosure_right {U V : Set α} (U_open : IsOpen U)
(disj : Disjoint U V) : Disjoint U (InteriorClosure V) :=
(disjoint_interiorClosure_left U_open (Disjoint.symm disj)).symm
theorem disjoint_interiorClosure_left_iff {U V : Set α} (U_open : IsOpen U) (V_open : IsOpen V) :
Disjoint U V ↔ Disjoint (InteriorClosure U) V :=
by
constructor
exact disjoint_interiorClosure_left V_open
intro disj
apply Set.disjoint_of_subset_left
· exact subset_closure
· rw [<-interiorClosure_closure U_open]
exact Disjoint.closure_left disj V_open
theorem disjoint_interiorClosure_iff {U V : Set α} (U_open : IsOpen U) (V_open : IsOpen V) :
Disjoint U V ↔ Disjoint (InteriorClosure U) (InteriorClosure V) :=
by
constructor
{
intro disj
apply disjoint_interiorClosure_left (interiorClosure_regular V).isOpen
apply disjoint_interiorClosure_right U_open
exact disj
}
{
intro disj
rw [disjoint_interiorClosure_left_iff U_open V_open]
symm
rw [disjoint_interiorClosure_left_iff V_open (interiorClosure_open _)]
symm
exact disj
}
theorem subset_from_diff_closure_eq_empty {U V : Set α}
(U_regular : Regular U) (V_open : IsOpen V) (V_diff_cl_empty : V \ closure U = ∅) :
V ⊆ U :=
by
have V_eq_interior : interior V = V := IsOpen.interior_eq V_open
rw [<-V_eq_interior]
rw [<-U_regular]
apply interior_mono
rw [<-Set.diff_eq_empty]
exact V_diff_cl_empty
theorem regular_nbhd [T2Space α] {u v : α} (u_ne_v : u ≠ v):
∃ (U V : Set α), Regular U ∧ Regular V ∧ Disjoint U V ∧ u ∈ U ∧ v ∈ V :=
by
let ⟨U', V', U'_open, V'_open, u_in_U', v_in_V', disj⟩ := t2_separation u_ne_v
let U := InteriorClosure U'
let V := InteriorClosure V'
use U, V
repeat' apply And.intro
· apply interiorClosure_regular
· apply interiorClosure_regular
· apply disjoint_interiorClosure_left (interiorClosure_regular V').isOpen
apply disjoint_interiorClosure_right U'_open
exact disj
· exact (interiorClosure_subset U'_open) u_in_U'
· exact (interiorClosure_subset V'_open) v_in_V'
theorem regular_inter {U V : Set α} : Regular U → Regular V → Regular (U ∩ V) :=
by
intro U_reg V_reg
simp
have UV_open : IsOpen (U ∩ V) := IsOpen.inter U_reg.isOpen V_reg.isOpen
apply Set.eq_of_subset_of_subset
· simp
constructor
· nth_rw 2 [<-U_reg]
apply interiorClosure_mono
simp
· nth_rw 2 [<-V_reg]
apply interiorClosure_mono
simp
· apply interiorClosure_subset
exact UV_open
theorem regular_sInter {S : Set (Set α)} (S_finite : Set.Finite S) (all_reg : ∀ U ∈ S, Regular U):
Regular (⋂₀ S) :=
Set.Finite.induction_on' S_finite (by simp) (by
intro U S' U_in_S _ _ IH
rw [Set.sInter_insert]
apply regular_inter
· exact all_reg _ U_in_S
· exact IH
)
theorem interiorClosure_smulImage' {G : Type _} [Group G] [MulAction G α]
(g : G) (U : Set α)
(g_continuous : ∀ S : Set α, IsOpen S → IsOpen (g •'' S) ∧ IsOpen (g⁻¹ •'' S)) :
InteriorClosure (g •'' U) = g •'' InteriorClosure U :=
by
simp
rw [<-smulImage_interior' _ _ g_continuous]
rw [<-smulImage_closure' _ _ g_continuous]
theorem interiorClosure_smulImage {G : Type _} [Group G] [MulAction G α] [ContinuousMulAction G α]
(g : G) (U : Set α) :
InteriorClosure (g •'' U) = g •'' InteriorClosure U :=
interiorClosure_smulImage' g U (continuousMulAction_elem_continuous α g)
theorem smulImage_regular {G : Type _} [Group G] [MulAction G α] [ContinuousMulAction G α]
(g : G) (U : Set α) :
Regular U ↔ Regular (g •'' U) :=
by
suffices ∀ V : Set α, ∀ h : G, Regular V → Regular (h •'' V) by
constructor
apply this
have U_eq : g⁻¹ •'' (g •'' U) = U := by simp
nth_rw 2 [<-U_eq]
apply this
intro U g U_reg
unfold Regular
rw [interiorClosure_smulImage]
rw [U_reg]
end Rubin