|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2023 Laurent Bartholdi. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Author : Laurent Bartholdi
|
|
|
|
|
-/
|
|
|
|
|
import Mathlib.Data.Finset.Basic
|
|
|
|
|
import Mathlib.Data.Finset.Card
|
|
|
|
|
import Mathlib.Data.Fintype.Perm
|
|
|
|
|
import Mathlib.GroupTheory.Subgroup.Basic
|
|
|
|
|
import Mathlib.GroupTheory.Commutator
|
|
|
|
|
import Mathlib.GroupTheory.GroupAction.Basic
|
|
|
|
|
import Mathlib.GroupTheory.Exponent
|
|
|
|
|
import Mathlib.GroupTheory.Perm.Basic
|
|
|
|
|
import Mathlib.Topology.Basic
|
|
|
|
|
import Mathlib.Topology.Bases
|
|
|
|
|
import Mathlib.Topology.Compactness.Compact
|
|
|
|
|
import Mathlib.Topology.Separation
|
|
|
|
|
import Mathlib.Topology.Homeomorph
|
|
|
|
|
import Mathlib.Topology.Algebra.ConstMulAction
|
|
|
|
|
|
|
|
|
|
import Rubin.Tactic
|
|
|
|
|
import Rubin.MulActionExt
|
|
|
|
|
import Rubin.SmulImage
|
|
|
|
|
import Rubin.Support
|
|
|
|
|
import Rubin.Topology
|
|
|
|
|
import Rubin.RigidStabilizer
|
|
|
|
|
import Rubin.RigidStabilizerBasis
|
|
|
|
|
import Rubin.Period
|
|
|
|
|
import Rubin.AlgebraicDisjointness
|
|
|
|
|
import Rubin.RegularSupport
|
|
|
|
|
import Rubin.RegularSupportBasis
|
|
|
|
|
import Rubin.HomeoGroup
|
|
|
|
|
|
|
|
|
|
#align_import rubin
|
|
|
|
|
|
|
|
|
|
namespace Rubin
|
|
|
|
|
open Rubin.Tactic
|
|
|
|
|
|
|
|
|
|
-- TODO: find a home
|
|
|
|
|
theorem equiv_congr_ne {ι ι' : Type _} (e : ι ≃ ι') {x y : ι} : x ≠ y → e x ≠ e y :=
|
|
|
|
|
by
|
|
|
|
|
intro x_ne_y
|
|
|
|
|
by_contra h
|
|
|
|
|
apply x_ne_y
|
|
|
|
|
convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply]
|
|
|
|
|
#align equiv.congr_ne Rubin.equiv_congr_ne
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
|
|
section Rubin
|
|
|
|
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
|
|
section RubinActions
|
|
|
|
|
|
|
|
|
|
structure RubinAction (G α : Type _) extends
|
|
|
|
|
Group G,
|
|
|
|
|
TopologicalSpace α,
|
|
|
|
|
MulAction G α,
|
|
|
|
|
FaithfulSMul G α
|
|
|
|
|
where
|
|
|
|
|
locally_compact : LocallyCompactSpace α
|
|
|
|
|
hausdorff : T2Space α
|
|
|
|
|
no_isolated_points : HasNoIsolatedPoints α
|
|
|
|
|
locallyDense : LocallyDense G α
|
|
|
|
|
#align rubin_action Rubin.RubinAction
|
|
|
|
|
|
|
|
|
|
end RubinActions
|
|
|
|
|
|
|
|
|
|
section AlgebraicDisjointness
|
|
|
|
|
|
|
|
|
|
variable {G α : Type _}
|
|
|
|
|
variable [TopologicalSpace α]
|
|
|
|
|
variable [Group G]
|
|
|
|
|
variable [MulAction G α]
|
|
|
|
|
variable [ContinuousConstSMul G α]
|
|
|
|
|
variable [FaithfulSMul G α]
|
|
|
|
|
|
|
|
|
|
-- TODO: modify the proof to be less "let everything"-y, especially the first half
|
|
|
|
|
lemma proposition_1_1_1 [h_lm : LocallyMoving G α] [T2Space α] (f g : G) (supp_disjoint : Disjoint (Support α f) (Support α g)) : AlgebraicallyDisjoint f g := by
|
|
|
|
|
apply AlgebraicallyDisjoint_mk
|
|
|
|
|
intros h h_not_commute
|
|
|
|
|
-- h is not the identity on `Support α f`
|
|
|
|
|
have f_h_not_disjoint := (mt (disjoint_commute (G := G) (α := α)) h_not_commute)
|
|
|
|
|
have ⟨x, ⟨x_in_supp_f, x_in_supp_h⟩⟩ := Set.not_disjoint_iff.mp f_h_not_disjoint
|
|
|
|
|
have hx_ne_x := mem_support.mp x_in_supp_h
|
|
|
|
|
|
|
|
|
|
-- Since α is Hausdoff, there is a nonempty V ⊆ Support α f, with h •'' V disjoint from V
|
|
|
|
|
have ⟨V, V_open, x_in_V, V_in_support, disjoint_img_V⟩ := disjoint_nbhd_in (support_isOpen f) x_in_supp_f hx_ne_x
|
|
|
|
|
|
|
|
|
|
-- let f₂ be a nontrivial element of the RigidStabilizer G V
|
|
|
|
|
let ⟨f₂, f₂_in_rist_V, f₂_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem x_in_V)
|
|
|
|
|
|
|
|
|
|
-- Re-use the Hausdoff property of α again, this time yielding W ⊆ V
|
|
|
|
|
let ⟨y, y_moved⟩ := faithful_moves_point' α f₂_ne_one
|
|
|
|
|
have y_in_V := (rigidStabilizer_support.mp f₂_in_rist_V) (mem_support.mpr y_moved)
|
|
|
|
|
let ⟨W, W_open, y_in_W, W_in_V, disjoint_img_W⟩ := disjoint_nbhd_in V_open y_in_V y_moved
|
|
|
|
|
|
|
|
|
|
-- Let f₁ be a nontrivial element of RigidStabilizer G W
|
|
|
|
|
let ⟨f₁, f₁_in_rist_W, f₁_ne_one⟩ := h_lm.get_nontrivial_rist_elem W_open (Set.nonempty_of_mem y_in_W)
|
|
|
|
|
|
|
|
|
|
use f₁
|
|
|
|
|
use f₂
|
|
|
|
|
constructor <;> try constructor
|
|
|
|
|
· apply disjoint_commute (α := α)
|
|
|
|
|
apply Set.disjoint_of_subset_left _ supp_disjoint
|
|
|
|
|
calc
|
|
|
|
|
Support α f₁ ⊆ W := rigidStabilizer_support.mp f₁_in_rist_W
|
|
|
|
|
W ⊆ V := W_in_V
|
|
|
|
|
V ⊆ Support α f := V_in_support
|
|
|
|
|
· apply disjoint_commute (α := α)
|
|
|
|
|
apply Set.disjoint_of_subset_left _ supp_disjoint
|
|
|
|
|
calc
|
|
|
|
|
Support α f₂ ⊆ V := rigidStabilizer_support.mp f₂_in_rist_V
|
|
|
|
|
V ⊆ Support α f := V_in_support
|
|
|
|
|
|
|
|
|
|
-- We claim that [f₁, [f₂, h]] is a nontrivial elelement of Centralizer G g
|
|
|
|
|
let k := ⁅f₂, h⁆
|
|
|
|
|
have h₂ : ∀ z ∈ W, f₂ • z = k • z := by
|
|
|
|
|
intro z z_in_W
|
|
|
|
|
simp
|
|
|
|
|
symm
|
|
|
|
|
apply disjoint_support_comm f₂ h _ disjoint_img_V
|
|
|
|
|
· exact W_in_V z_in_W
|
|
|
|
|
· exact rigidStabilizer_support.mp f₂_in_rist_V
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
· -- then `k*f₁⁻¹*k⁻¹` is supported on k W = f₂ W,
|
|
|
|
|
-- so [f₁,k] is supported on W ∪ f₂ W ⊆ V ⊆ support f, so commutes with g.
|
|
|
|
|
apply disjoint_commute (α := α)
|
|
|
|
|
apply Set.disjoint_of_subset_left _ supp_disjoint
|
|
|
|
|
have supp_f₁_subset_W := (rigidStabilizer_support.mp f₁_in_rist_W)
|
|
|
|
|
|
|
|
|
|
show Support α ⁅f₁, ⁅f₂, h⁆⁆ ⊆ Support α f
|
|
|
|
|
calc
|
|
|
|
|
Support α ⁅f₁, k⁆ = Support α ⁅k, f₁⁆ := by rw [<-commutatorElement_inv, support_inv]
|
|
|
|
|
_ ⊆ Support α f₁ ∪ (k •'' Support α f₁) := support_comm α k f₁
|
|
|
|
|
_ ⊆ W ∪ (k •'' Support α f₁) := Set.union_subset_union_left _ supp_f₁_subset_W
|
|
|
|
|
_ ⊆ W ∪ (k •'' W) := by
|
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
|
exact (smulImage_mono k supp_f₁_subset_W)
|
|
|
|
|
_ = W ∪ (f₂ •'' W) := by rw [<-smulImage_eq_of_smul_eq h₂]
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' W) := Set.union_subset_union_left _ W_in_V
|
|
|
|
|
_ ⊆ V ∪ V := by
|
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
|
apply smulImage_subset_in_support f₂ W V W_in_V
|
|
|
|
|
exact rigidStabilizer_support.mp f₂_in_rist_V
|
|
|
|
|
_ ⊆ V := by rw [Set.union_self]
|
|
|
|
|
_ ⊆ Support α f := V_in_support
|
|
|
|
|
|
|
|
|
|
· -- finally, [f₁,k] agrees with f₁ on W, so is not the identity.
|
|
|
|
|
have h₄: ∀ z ∈ W, ⁅f₁, k⁆ • z = f₁ • z := by
|
|
|
|
|
apply disjoint_support_comm f₁ k
|
|
|
|
|
exact rigidStabilizer_support.mp f₁_in_rist_W
|
|
|
|
|
rw [<-smulImage_eq_of_smul_eq h₂]
|
|
|
|
|
exact disjoint_img_W
|
|
|
|
|
let ⟨z, z_in_W, z_moved⟩ := faithful_rigid_stabilizer_moves_point f₁_in_rist_W f₁_ne_one
|
|
|
|
|
|
|
|
|
|
by_contra h₅
|
|
|
|
|
rw [<-h₄ z z_in_W] at z_moved
|
|
|
|
|
have h₆ : ⁅f₁, ⁅f₂, h⁆⁆ • z = z := by rw [h₅, one_smul]
|
|
|
|
|
exact z_moved h₆
|
|
|
|
|
#align proposition_1_1_1 Rubin.proposition_1_1_1
|
|
|
|
|
|
|
|
|
|
lemma moves_1234_of_moves_12 {g : G} {x : α} (g12_moves : g^12 • x ≠ x) :
|
|
|
|
|
Function.Injective (fun i : Fin 5 => g^(i : ℤ) • x) :=
|
|
|
|
|
by
|
|
|
|
|
apply moves_inj
|
|
|
|
|
intros k k_ge_1 k_lt_5
|
|
|
|
|
simp at k_lt_5
|
|
|
|
|
|
|
|
|
|
by_contra x_fixed
|
|
|
|
|
have k_div_12 : k ∣ 12 := by
|
|
|
|
|
-- Note: norm_num does not support ℤ.dvd yet, nor ℤ.mod, nor Int.natAbs, nor Int.div, etc.
|
|
|
|
|
have h: (12 : ℤ) = (12 : ℕ) := by norm_num
|
|
|
|
|
rw [h, Int.ofNat_dvd_right]
|
|
|
|
|
apply Nat.dvd_of_mod_eq_zero
|
|
|
|
|
|
|
|
|
|
interval_cases k
|
|
|
|
|
all_goals unfold Int.natAbs
|
|
|
|
|
all_goals norm_num
|
|
|
|
|
|
|
|
|
|
have g12_fixed : g^12 • x = x := by
|
|
|
|
|
rw [<-zpow_ofNat]
|
|
|
|
|
simp
|
|
|
|
|
rw [<-Int.mul_ediv_cancel' k_div_12]
|
|
|
|
|
have res := smul_zpow_eq_of_smul_eq (12/k) x_fixed
|
|
|
|
|
group_action at res
|
|
|
|
|
exact res
|
|
|
|
|
|
|
|
|
|
exact g12_moves g12_fixed
|
|
|
|
|
|
|
|
|
|
lemma proposition_1_1_2 [T2Space α] [h_lm : LocallyMoving G α]
|
|
|
|
|
(f g : G) (h_disj : AlgebraicallyDisjoint f g) : Disjoint (Support α f) (Support α (g^12)) :=
|
|
|
|
|
by
|
|
|
|
|
by_contra not_disjoint
|
|
|
|
|
let U := Support α f ∩ Support α (g^12)
|
|
|
|
|
have U_nonempty : U.Nonempty := by
|
|
|
|
|
apply Set.not_disjoint_iff_nonempty_inter.mp
|
|
|
|
|
exact not_disjoint
|
|
|
|
|
|
|
|
|
|
-- Since G is Hausdorff, we can find a nonempty set V ⊆ such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint
|
|
|
|
|
let x := U_nonempty.some
|
|
|
|
|
have x_in_U : x ∈ U := Set.Nonempty.some_mem U_nonempty
|
|
|
|
|
have fx_moves : f • x ≠ x := Set.inter_subset_left _ _ x_in_U
|
|
|
|
|
|
|
|
|
|
have five_points : Function.Injective (fun i : Fin 5 => g^(i : ℤ) • x) := by
|
|
|
|
|
apply moves_1234_of_moves_12
|
|
|
|
|
exact (Set.inter_subset_right _ _ x_in_U)
|
|
|
|
|
have U_open: IsOpen U := (IsOpen.inter (support_isOpen f) (support_isOpen (g^12)))
|
|
|
|
|
|
|
|
|
|
let ⟨V₀, V₀_open, x_in_V₀, V₀_in_support, disjoint_img_V₀⟩ := disjoint_nbhd_in U_open x_in_U fx_moves
|
|
|
|
|
let ⟨V₁, V₁_open, x_in_V₁, disjoint_img_V₁⟩ := disjoint_nbhd_fin five_points
|
|
|
|
|
|
|
|
|
|
let V := V₀ ∩ V₁
|
|
|
|
|
-- Let h be a nontrivial element of the RigidStabilizer G V
|
|
|
|
|
let ⟨h, ⟨h_in_ristV, h_ne_one⟩⟩ := h_lm.get_nontrivial_rist_elem (IsOpen.inter V₀_open V₁_open) (Set.nonempty_of_mem ⟨x_in_V₀, x_in_V₁⟩)
|
|
|
|
|
|
|
|
|
|
have V_disjoint_smulImage: Disjoint V (f •'' V) := by
|
|
|
|
|
apply Set.disjoint_of_subset
|
|
|
|
|
· exact Set.inter_subset_left _ _
|
|
|
|
|
· apply smulImage_mono
|
|
|
|
|
exact Set.inter_subset_left _ _
|
|
|
|
|
· exact disjoint_img_V₀
|
|
|
|
|
|
|
|
|
|
have comm_non_trivial : ¬Commute f h := by
|
|
|
|
|
by_contra comm_trivial
|
|
|
|
|
let ⟨z, z_in_V, z_moved⟩ := faithful_rigid_stabilizer_moves_point h_in_ristV h_ne_one
|
|
|
|
|
apply z_moved
|
|
|
|
|
|
|
|
|
|
nth_rewrite 2 [<-one_smul G z]
|
|
|
|
|
rw [<-commutatorElement_eq_one_iff_commute.mpr comm_trivial.symm]
|
|
|
|
|
symm
|
|
|
|
|
|
|
|
|
|
apply disjoint_support_comm h f
|
|
|
|
|
· exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
|
· exact V_disjoint_smulImage
|
|
|
|
|
· exact z_in_V
|
|
|
|
|
|
|
|
|
|
-- Since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g)
|
|
|
|
|
let alg_disj_elem := h_disj h comm_non_trivial
|
|
|
|
|
let f₁ := alg_disj_elem.fst
|
|
|
|
|
let f₂ := alg_disj_elem.snd
|
|
|
|
|
let h' := alg_disj_elem.comm_elem
|
|
|
|
|
have f₁_commutes : Commute f₁ g := alg_disj_elem.fst_commute
|
|
|
|
|
have f₂_commutes : Commute f₂ g := alg_disj_elem.snd_commute
|
|
|
|
|
have h'_commutes : Commute h' g := alg_disj_elem.comm_elem_commute
|
|
|
|
|
have h'_nontrivial : h' ≠ 1 := alg_disj_elem.comm_elem_nontrivial
|
|
|
|
|
|
|
|
|
|
have support_f₂_h : Support α ⁅f₂,h⁆ ⊆ V ∪ (f₂ •'' V) := by
|
|
|
|
|
calc
|
|
|
|
|
Support α ⁅f₂, h⁆ ⊆ Support α h ∪ (f₂ •'' Support α h) := support_comm α f₂ h
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' Support α h) := by
|
|
|
|
|
apply Set.union_subset_union_left
|
|
|
|
|
exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) := by
|
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
|
apply smulImage_mono
|
|
|
|
|
exact rigidStabilizer_support.mp h_in_ristV
|
|
|
|
|
have support_h' : Support α h' ⊆ ⋃(i : Fin 2 × Fin 2), (f₁^(i.1.val) * f₂^(i.2.val)) •'' V := by
|
|
|
|
|
rw [rewrite_Union]
|
|
|
|
|
simp (config := {zeta := false})
|
|
|
|
|
rw [<-smulImage_mul, <-smulImage_union]
|
|
|
|
|
calc
|
|
|
|
|
Support α h' ⊆ Support α ⁅f₂,h⁆ ∪ (f₁ •'' Support α ⁅f₂, h⁆) := support_comm α f₁ ⁅f₂,h⁆
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) ∪ (f₁ •'' Support α ⁅f₂, h⁆) := by
|
|
|
|
|
apply Set.union_subset_union_left
|
|
|
|
|
exact support_f₂_h
|
|
|
|
|
_ ⊆ V ∪ (f₂ •'' V) ∪ (f₁ •'' V ∪ (f₂ •'' V)) := by
|
|
|
|
|
apply Set.union_subset_union_right
|
|
|
|
|
apply smulImage_mono f₁
|
|
|
|
|
exact support_f₂_h
|
|
|
|
|
|
|
|
|
|
-- Since h' is nontrivial, it has at least one point p in its support
|
|
|
|
|
let ⟨p, p_moves⟩ := faithful_moves_point' α h'_nontrivial
|
|
|
|
|
-- Since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h')
|
|
|
|
|
have gi_in_support : ∀ (i: Fin 5), g^(i.val) • p ∈ Support α h' := by
|
|
|
|
|
intro i
|
|
|
|
|
rw [mem_support]
|
|
|
|
|
by_contra p_fixed
|
|
|
|
|
rw [<-mul_smul, h'_commutes.pow_right, mul_smul] at p_fixed
|
|
|
|
|
group_action at p_fixed
|
|
|
|
|
exact p_moves p_fixed
|
|
|
|
|
|
|
|
|
|
-- The next section gets tricky, so let us clear away some stuff first :3
|
|
|
|
|
clear h'_commutes h'_nontrivial
|
|
|
|
|
clear V₀_open x_in_V₀ V₀_in_support disjoint_img_V₀
|
|
|
|
|
clear V₁_open x_in_V₁
|
|
|
|
|
clear five_points h_in_ristV h_ne_one V_disjoint_smulImage
|
|
|
|
|
clear support_f₂_h
|
|
|
|
|
|
|
|
|
|
-- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points,
|
|
|
|
|
-- say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂}
|
|
|
|
|
let pigeonhole : Fintype.card (Fin 5) > Fintype.card (Fin 2 × Fin 2) := by trivial
|
|
|
|
|
let choice_pred := fun (i : Fin 5) => (Set.mem_iUnion.mp (support_h' (gi_in_support i)))
|
|
|
|
|
let choice := fun (i : Fin 5) => (choice_pred i).choose
|
|
|
|
|
let ⟨i, _, j, _, i_ne_j, same_choice⟩ := Finset.exists_ne_map_eq_of_card_lt_of_maps_to
|
|
|
|
|
pigeonhole
|
|
|
|
|
(fun (i : Fin 5) _ => Finset.mem_univ (choice i))
|
|
|
|
|
|
|
|
|
|
let k := f₁^(choice i).1.val * f₂^(choice i).2.val
|
|
|
|
|
have same_k : f₁^(choice j).1.val * f₂^(choice j).2.val = k := by rw [<-same_choice]
|
|
|
|
|
have gi : g^i.val • p ∈ k •'' V := (choice_pred i).choose_spec
|
|
|
|
|
have gk : g^j.val • p ∈ k •'' V := by
|
|
|
|
|
have gk' := (choice_pred j).choose_spec
|
|
|
|
|
rw [same_k] at gk'
|
|
|
|
|
exact gk'
|
|
|
|
|
|
|
|
|
|
-- Since g^(j-i)(V) is disjoint from V and k commutes with g,
|
|
|
|
|
-- we know that g^(j−i)k(V) is disjoint from k(V),
|
|
|
|
|
-- which leads to a contradiction since g^i(p) and g^j(p) both lie in k(V).
|
|
|
|
|
|
|
|
|
|
have g_disjoint : Disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := by
|
|
|
|
|
apply smulImage_disjoint_subset (Set.inter_subset_right V₀ V₁)
|
|
|
|
|
group
|
|
|
|
|
rw [smulImage_disjoint_inv_pow]
|
|
|
|
|
group
|
|
|
|
|
apply disjoint_img_V₁
|
|
|
|
|
symm; exact i_ne_j
|
|
|
|
|
|
|
|
|
|
have k_commutes: Commute k g := by
|
|
|
|
|
apply Commute.mul_left
|
|
|
|
|
· exact f₁_commutes.pow_left _
|
|
|
|
|
· exact f₂_commutes.pow_left _
|
|
|
|
|
clear f₁_commutes f₂_commutes
|
|
|
|
|
|
|
|
|
|
have g_k_disjoint : Disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := by
|
|
|
|
|
repeat rw [smulImage_mul]
|
|
|
|
|
repeat rw [<-inv_pow]
|
|
|
|
|
repeat rw [k_commutes.symm.inv_left.pow_left]
|
|
|
|
|
repeat rw [<-smulImage_mul k]
|
|
|
|
|
repeat rw [inv_pow]
|
|
|
|
|
exact smulImage_disjoint k g_disjoint
|
|
|
|
|
|
|
|
|
|
apply Set.disjoint_left.mp g_k_disjoint
|
|
|
|
|
· rw [mem_inv_smulImage]
|
|
|
|
|
exact gi
|
|
|
|
|
· rw [mem_inv_smulImage]
|
|
|
|
|
exact gk
|
|
|
|
|
|
|
|
|
|
lemma remark_1_2 (f g : G) (h_disj : AlgebraicallyDisjoint f g): Commute f g := by
|
|
|
|
|
by_contra non_commute
|
|
|
|
|
let disj_elem := h_disj g non_commute
|
|
|
|
|
let nontrivial := disj_elem.comm_elem_nontrivial
|
|
|
|
|
|
|
|
|
|
rw [commutatorElement_eq_one_iff_commute.mpr disj_elem.snd_commute] at nontrivial
|
|
|
|
|
rw [commutatorElement_one_right] at nontrivial
|
|
|
|
|
|
|
|
|
|
tauto
|
|
|
|
|
|
|
|
|
|
end AlgebraicDisjointness
|
|
|
|
|
|
|
|
|
|
section RegularSupport
|
|
|
|
|
|
|
|
|
|
lemma lemma_2_2 (G: Type _) {α : Type _} [Group G] [TopologicalSpace α] [MulAction G α]
|
|
|
|
|
[ContinuousConstSMul G α] [FaithfulSMul G α]
|
|
|
|
|
[T2Space α] [h_lm : LocallyMoving G α]
|
|
|
|
|
{U : Set α} (U_open : IsOpen U) (U_nonempty : Set.Nonempty U) :
|
|
|
|
|
Monoid.exponent G•[U] = 0 :=
|
|
|
|
|
by
|
|
|
|
|
by_contra exp_ne_zero
|
|
|
|
|
|
|
|
|
|
let ⟨p, ⟨g, g_in_ristU⟩, n, p_in_U, n_pos, hpgn, n_eq_Sup⟩ := Period.period_from_exponent U U_nonempty exp_ne_zero
|
|
|
|
|
simp at hpgn
|
|
|
|
|
let ⟨V', V'_open, p_in_V', disj'⟩ := disjoint_nbhd_fin (smul_injective_within_period hpgn)
|
|
|
|
|
|
|
|
|
|
let V := U ∩ V'
|
|
|
|
|
have V_open : IsOpen V := U_open.inter V'_open
|
|
|
|
|
have p_in_V : p ∈ V := ⟨p_in_U, p_in_V'⟩
|
|
|
|
|
have disj : ∀ (i j : Fin n), i ≠ j → Disjoint (g ^ (i : ℕ) •'' V) (g ^ (j : ℕ) •'' V) := by
|
|
|
|
|
intro i j i_ne_j
|
|
|
|
|
apply Set.disjoint_of_subset
|
|
|
|
|
· apply smulImage_mono
|
|
|
|
|
apply Set.inter_subset_right
|
|
|
|
|
· apply smulImage_mono
|
|
|
|
|
apply Set.inter_subset_right
|
|
|
|
|
exact disj' i j i_ne_j
|
|
|
|
|
|
|
|
|
|
let ⟨h, h_in_ristV, h_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem p_in_V)
|
|
|
|
|
have hg_in_ristU : h * g ∈ RigidStabilizer G U := by
|
|
|
|
|
simp [RigidStabilizer]
|
|
|
|
|
intro x x_notin_U
|
|
|
|
|
rw [mul_smul]
|
|
|
|
|
rw [g_in_ristU _ x_notin_U]
|
|
|
|
|
have x_notin_V : x ∉ V := fun x_in_V => x_notin_U x_in_V.left
|
|
|
|
|
rw [h_in_ristV _ x_notin_V]
|
|
|
|
|
let ⟨q, q_in_V, hq_ne_q ⟩ := faithful_rigid_stabilizer_moves_point h_in_ristV h_ne_one
|
|
|
|
|
have gpowi_q_notin_V : ∀ (i : Fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • q ∉ V := by
|
|
|
|
|
apply smulImage_distinct_of_disjoint_pow n_pos disj
|
|
|
|
|
exact q_in_V
|
|
|
|
|
|
|
|
|
|
-- We have (hg)^i q = g^i q for all 0 < i < n
|
|
|
|
|
have hgpow_eq_gpow : ∀ (i : Fin n), (h * g) ^ (i : ℕ) • q = g ^ (i : ℕ) • q := by
|
|
|
|
|
intro ⟨i, i_lt_n⟩
|
|
|
|
|
simp
|
|
|
|
|
induction i with
|
|
|
|
|
| zero => simp
|
|
|
|
|
| succ i' IH =>
|
|
|
|
|
have i'_lt_n: i' < n := Nat.lt_of_succ_lt i_lt_n
|
|
|
|
|
have IH := IH i'_lt_n
|
|
|
|
|
rw [smul_succ]
|
|
|
|
|
rw [IH]
|
|
|
|
|
rw [smul_succ]
|
|
|
|
|
rw [mul_smul]
|
|
|
|
|
rw [<-smul_succ]
|
|
|
|
|
|
|
|
|
|
-- We can show that `g^(Nat.succ i') • q ∉ V`,
|
|
|
|
|
-- which means that with `h` in `RigidStabilizer G V`, `h` fixes that point
|
|
|
|
|
apply h_in_ristV (g^(Nat.succ i') • q)
|
|
|
|
|
|
|
|
|
|
let i'₂ : Fin n := ⟨Nat.succ i', i_lt_n⟩
|
|
|
|
|
have h_eq: Nat.succ i' = (i'₂ : ℕ) := by simp
|
|
|
|
|
rw [h_eq]
|
|
|
|
|
apply smulImage_distinct_of_disjoint_pow
|
|
|
|
|
· exact n_pos
|
|
|
|
|
· exact disj
|
|
|
|
|
· exact q_in_V
|
|
|
|
|
· simp
|
|
|
|
|
|
|
|
|
|
-- Combined with `g^i • q ≠ q`, this yields `(hg)^i • q ≠ q` for all `0 < i < n`
|
|
|
|
|
have hgpow_moves : ∀ (i : Fin n), 0 < (i : ℕ) → (h*g)^(i : ℕ) • q ≠ q := by
|
|
|
|
|
intro ⟨i, i_lt_n⟩ i_pos
|
|
|
|
|
simp at i_pos
|
|
|
|
|
rw [hgpow_eq_gpow]
|
|
|
|
|
simp
|
|
|
|
|
by_contra h'
|
|
|
|
|
apply gpowi_q_notin_V ⟨i, i_lt_n⟩
|
|
|
|
|
exact i_pos
|
|
|
|
|
simp (config := {zeta := false}) only []
|
|
|
|
|
rw [h']
|
|
|
|
|
exact q_in_V
|
|
|
|
|
|
|
|
|
|
-- This even holds for `i = n`
|
|
|
|
|
have hgpown_moves : (h * g) ^ n • q ≠ q := by
|
|
|
|
|
-- Rewrite (hg)^n • q = h * g^n • q
|
|
|
|
|
rw [<-Nat.succ_pred n_pos.ne.symm]
|
|
|
|
|
rw [pow_succ]
|
|
|
|
|
have h_eq := hgpow_eq_gpow ⟨Nat.pred n, Nat.pred_lt_self n_pos⟩
|
|
|
|
|
simp at h_eq
|
|
|
|
|
rw [mul_smul, h_eq, <-mul_smul, mul_assoc, <-pow_succ]
|
|
|
|
|
rw [<-Nat.succ_eq_add_one, Nat.succ_pred n_pos.ne.symm]
|
|
|
|
|
|
|
|
|
|
-- We first eliminate `g^n • q` by proving that `n = Period g q`
|
|
|
|
|
have period_gq_eq_n : Period.period q g = n := by
|
|
|
|
|
apply ge_antisymm
|
|
|
|
|
{
|
|
|
|
|
apply Period.notfix_le_period'
|
|
|
|
|
· exact n_pos
|
|
|
|
|
· apply Period.period_pos'
|
|
|
|
|
· exact Set.nonempty_of_mem p_in_U
|
|
|
|
|
· exact exp_ne_zero
|
|
|
|
|
· exact q_in_V.left
|
|
|
|
|
· exact g_in_ristU
|
|
|
|
|
· intro i i_pos
|
|
|
|
|
rw [<-hgpow_eq_gpow]
|
|
|
|
|
apply hgpow_moves i i_pos
|
|
|
|
|
}
|
|
|
|
|
{
|
|
|
|
|
rw [n_eq_Sup]
|
|
|
|
|
apply Period.period_le_Sup_periods'
|
|
|
|
|
· exact Set.nonempty_of_mem p_in_U
|
|
|
|
|
· exact exp_ne_zero
|
|
|
|
|
· exact q_in_V.left
|
|
|
|
|
· exact g_in_ristU
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
rw [mul_smul, <-period_gq_eq_n]
|
|
|
|
|
rw [Period.pow_period_fix]
|
|
|
|
|
-- Finally, we have `h • q ≠ q`
|
|
|
|
|
exact hq_ne_q
|
|
|
|
|
|
|
|
|
|
-- Finally, we derive a contradiction
|
|
|
|
|
have ⟨period_hg_pos, period_hg_le_n⟩ := Period.zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero ⟨q, q_in_V.left⟩ ⟨h * g, hg_in_ristU⟩
|
|
|
|
|
simp at period_hg_pos
|
|
|
|
|
simp at period_hg_le_n
|
|
|
|
|
rw [<-n_eq_Sup] at period_hg_le_n
|
|
|
|
|
cases (lt_or_eq_of_le period_hg_le_n) with
|
|
|
|
|
| inl period_hg_lt_n =>
|
|
|
|
|
apply hgpow_moves ⟨Period.period q (h * g), period_hg_lt_n⟩
|
|
|
|
|
exact period_hg_pos
|
|
|
|
|
simp
|
|
|
|
|
apply Period.pow_period_fix
|
|
|
|
|
| inr period_hg_eq_n =>
|
|
|
|
|
apply hgpown_moves
|
|
|
|
|
rw [<-period_hg_eq_n]
|
|
|
|
|
apply Period.pow_period_fix
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- Given the statement `¬Support α h ⊆ RegularSupport α f`,
|
|
|
|
|
-- we construct an open subset within `Support α h \ RegularSupport α f`,
|
|
|
|
|
-- and we show that it is non-empty, open and (by construction) disjoint from `Support α f`.
|
|
|
|
|
lemma open_set_from_supp_not_subset_rsupp {G α : Type _}
|
|
|
|
|
[Group G] [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α] [T2Space α]
|
|
|
|
|
{f h : G} (not_support_subset_rsupp : ¬Support α h ⊆ RegularSupport α f):
|
|
|
|
|
∃ V : Set α, V ⊆ Support α h ∧ Set.Nonempty V ∧ IsOpen V ∧ Disjoint V (Support α f) :=
|
|
|
|
|
by
|
|
|
|
|
let U := Support α h \ closure (RegularSupport α f)
|
|
|
|
|
have U_open : IsOpen U := by
|
|
|
|
|
unfold_let
|
|
|
|
|
rw [Set.diff_eq_compl_inter]
|
|
|
|
|
apply IsOpen.inter
|
|
|
|
|
· simp
|
|
|
|
|
· exact support_isOpen _
|
|
|
|
|
have U_subset_supp_h : U ⊆ Support α h := by simp; apply Set.diff_subset
|
|
|
|
|
have U_disj_supp_f : Disjoint U (Support α f) := by
|
|
|
|
|
apply Set.disjoint_of_subset_right
|
|
|
|
|
· exact subset_closure
|
|
|
|
|
· simp
|
|
|
|
|
rw [Set.diff_eq_compl_inter]
|
|
|
|
|
apply Disjoint.inter_left
|
|
|
|
|
apply Disjoint.closure_right; swap; simp
|
|
|
|
|
|
|
|
|
|
rw [Set.disjoint_compl_left_iff_subset]
|
|
|
|
|
apply subset_trans
|
|
|
|
|
exact subset_closure
|
|
|
|
|
apply closure_mono
|
|
|
|
|
apply support_subset_regularSupport
|
|
|
|
|
|
|
|
|
|
have U_nonempty : Set.Nonempty U; swap
|
|
|
|
|
exact ⟨U, U_subset_supp_h, U_nonempty, U_open, U_disj_supp_f⟩
|
|
|
|
|
|
|
|
|
|
-- We prove that U isn't empty by contradiction:
|
|
|
|
|
-- if it is empty, then `Support α h \ closure (RegularSupport α f) = ∅`,
|
|
|
|
|
-- so we can show that `Support α h ⊆ RegularSupport α f`,
|
|
|
|
|
-- contradicting with our initial hypothesis.
|
|
|
|
|
by_contra U_empty
|
|
|
|
|
apply not_support_subset_rsupp
|
|
|
|
|
show Support α h ⊆ RegularSupport α f
|
|
|
|
|
|
|
|
|
|
apply subset_from_diff_closure_eq_empty
|
|
|
|
|
· apply regularSupport_regular
|
|
|
|
|
· exact support_isOpen _
|
|
|
|
|
· rw [Set.not_nonempty_iff_eq_empty] at U_empty
|
|
|
|
|
exact U_empty
|
|
|
|
|
|
|
|
|
|
lemma nontrivial_pow_from_exponent_eq_zero {G : Type _} [Group G]
|
|
|
|
|
(exp_eq_zero : Monoid.exponent G = 0) :
|
|
|
|
|
∀ (n : ℕ), n > 0 → ∃ g : G, g^n ≠ 1 :=
|
|
|
|
|
by
|
|
|
|
|
intro n n_pos
|
|
|
|
|
rw [Monoid.exponent_eq_zero_iff] at exp_eq_zero
|
|
|
|
|
unfold Monoid.ExponentExists at exp_eq_zero
|
|
|
|
|
rw [<-Classical.not_forall_not, Classical.not_not] at exp_eq_zero
|
|
|
|
|
simp at exp_eq_zero
|
|
|
|
|
exact exp_eq_zero n n_pos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lemma proposition_2_1 {G α : Type _}
|
|
|
|
|
[Group G] [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α] [T2Space α]
|
|
|
|
|
[LocallyMoving G α] [h_faithful : FaithfulSMul G α]
|
|
|
|
|
(f : G) :
|
|
|
|
|
AlgebraicCentralizer f = G•[RegularSupport α f] :=
|
|
|
|
|
by
|
|
|
|
|
ext h
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
swap
|
|
|
|
|
{
|
|
|
|
|
intro h_in_rist
|
|
|
|
|
simp at h_in_rist
|
|
|
|
|
unfold AlgebraicCentralizer
|
|
|
|
|
rw [Subgroup.mem_centralizer_iff]
|
|
|
|
|
intro g g_in_S
|
|
|
|
|
simp [AlgebraicSubgroup] at g_in_S
|
|
|
|
|
let ⟨g', ⟨g'_alg_disj, g_eq_g'⟩⟩ := g_in_S
|
|
|
|
|
have supp_disj := proposition_1_1_2 f g' g'_alg_disj (α := α)
|
|
|
|
|
|
|
|
|
|
apply Commute.eq
|
|
|
|
|
symm
|
|
|
|
|
apply commute_if_rigidStabilizer_and_disjoint (α := α)
|
|
|
|
|
· exact h_in_rist
|
|
|
|
|
· show Disjoint (RegularSupport α f) (Support α g)
|
|
|
|
|
have cl_supp_disj : Disjoint (closure (Support α f)) (Support α g)
|
|
|
|
|
swap
|
|
|
|
|
|
|
|
|
|
apply Set.disjoint_of_subset _ _ cl_supp_disj
|
|
|
|
|
· rw [RegularSupport.def]
|
|
|
|
|
exact interior_subset
|
|
|
|
|
· rfl
|
|
|
|
|
· rw [<-g_eq_g']
|
|
|
|
|
exact Disjoint.closure_left supp_disj (support_isOpen _)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
intro h_in_centralizer
|
|
|
|
|
by_contra h_notin_rist
|
|
|
|
|
simp at h_notin_rist
|
|
|
|
|
rw [rigidStabilizer_support] at h_notin_rist
|
|
|
|
|
let ⟨V, V_in_supp_h, V_nonempty, V_open, V_disj_supp_f⟩ := open_set_from_supp_not_subset_rsupp h_notin_rist
|
|
|
|
|
let ⟨v, v_in_V⟩ := V_nonempty
|
|
|
|
|
have v_moved := V_in_supp_h v_in_V
|
|
|
|
|
rw [mem_support] at v_moved
|
|
|
|
|
|
|
|
|
|
have ⟨W, W_open, v_in_W, W_subset_support, disj_W_img⟩ := disjoint_nbhd_in V_open v_in_V v_moved
|
|
|
|
|
|
|
|
|
|
have mono_exp := lemma_2_2 G W_open (Set.nonempty_of_mem v_in_W)
|
|
|
|
|
let ⟨⟨g, g_in_rist⟩, g12_ne_one⟩ := nontrivial_pow_from_exponent_eq_zero mono_exp 12 (by norm_num)
|
|
|
|
|
simp at g12_ne_one
|
|
|
|
|
|
|
|
|
|
have disj_supports : Disjoint (Support α f) (Support α g) := by
|
|
|
|
|
apply Set.disjoint_of_subset_right
|
|
|
|
|
· apply rigidStabilizer_support.mp
|
|
|
|
|
exact g_in_rist
|
|
|
|
|
· apply Set.disjoint_of_subset_right
|
|
|
|
|
· exact W_subset_support
|
|
|
|
|
· exact V_disj_supp_f.symm
|
|
|
|
|
have alg_disj_f_g := proposition_1_1_1 _ _ disj_supports
|
|
|
|
|
have g12_in_algebraic_subgroup : g^12 ∈ AlgebraicSubgroup f := by
|
|
|
|
|
simp [AlgebraicSubgroup]
|
|
|
|
|
use g
|
|
|
|
|
constructor
|
|
|
|
|
exact ↑alg_disj_f_g
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
have h_nc_g12 : ¬Commute (g^12) h := by
|
|
|
|
|
have supp_g12_sub_W : Support α (g^12) ⊆ W := by
|
|
|
|
|
rw [rigidStabilizer_support] at g_in_rist
|
|
|
|
|
calc
|
|
|
|
|
Support α (g^12) ⊆ Support α g := by apply support_pow
|
|
|
|
|
_ ⊆ W := g_in_rist
|
|
|
|
|
have supp_g12_disj_hW : Disjoint (Support α (g^12)) (h •'' W) := by
|
|
|
|
|
apply Set.disjoint_of_subset_left
|
|
|
|
|
swap
|
|
|
|
|
· exact disj_W_img
|
|
|
|
|
· exact supp_g12_sub_W
|
|
|
|
|
|
|
|
|
|
exact not_commute_of_disj_support_smulImage
|
|
|
|
|
g12_ne_one
|
|
|
|
|
supp_g12_sub_W
|
|
|
|
|
supp_g12_disj_hW
|
|
|
|
|
|
|
|
|
|
apply h_nc_g12
|
|
|
|
|
exact h_in_centralizer _ g12_in_algebraic_subgroup
|
|
|
|
|
|
|
|
|
|
-- Small lemma for remark 2.3
|
|
|
|
|
theorem rigidStabilizer_inter_bot_iff_regularSupport_disj {G α : Type _}
|
|
|
|
|
[Group G] [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α] [LocallyMoving G α] [FaithfulSMul G α]
|
|
|
|
|
{f g : G} :
|
|
|
|
|
G•[RegularSupport α f] ⊓ G•[RegularSupport α g] = ⊥
|
|
|
|
|
↔ Disjoint (RegularSupport α f) (RegularSupport α g) :=
|
|
|
|
|
by
|
|
|
|
|
rw [<-rigidStabilizer_inter]
|
|
|
|
|
constructor
|
|
|
|
|
{
|
|
|
|
|
intro rist_disj
|
|
|
|
|
|
|
|
|
|
by_contra rsupp_not_disj
|
|
|
|
|
rw [Set.not_disjoint_iff] at rsupp_not_disj
|
|
|
|
|
let ⟨x, x_in_rsupp_f, x_in_rsupp_g⟩ := rsupp_not_disj
|
|
|
|
|
|
|
|
|
|
have rsupp_open: IsOpen (RegularSupport α f ∩ RegularSupport α g) := by
|
|
|
|
|
apply IsOpen.inter <;> exact regularSupport_open _ _
|
|
|
|
|
|
|
|
|
|
-- The contradiction occurs by applying the definition of LocallyMoving:
|
|
|
|
|
apply LocallyMoving.locally_moving (G := G) _ rsupp_open _ rist_disj
|
|
|
|
|
|
|
|
|
|
exact ⟨x, x_in_rsupp_f, x_in_rsupp_g⟩
|
|
|
|
|
}
|
|
|
|
|
{
|
|
|
|
|
intro rsupp_disj
|
|
|
|
|
rw [Set.disjoint_iff_inter_eq_empty] at rsupp_disj
|
|
|
|
|
rw [rsupp_disj]
|
|
|
|
|
|
|
|
|
|
by_contra rist_ne_bot
|
|
|
|
|
rw [<-ne_eq, Subgroup.ne_bot_iff_exists_ne_one] at rist_ne_bot
|
|
|
|
|
let ⟨⟨h, h_in_rist⟩, h_ne_one⟩ := rist_ne_bot
|
|
|
|
|
simp at h_ne_one
|
|
|
|
|
apply h_ne_one
|
|
|
|
|
rw [rigidStabilizer_empty] at h_in_rist
|
|
|
|
|
rw [Subgroup.mem_bot] at h_in_rist
|
|
|
|
|
exact h_in_rist
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
variable {G α : Type _}
|
|
|
|
|
variable [Group G]
|
|
|
|
|
variable [TopologicalSpace α] [T2Space α]
|
|
|
|
|
variable [MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α] [LocallyMoving G α]
|
|
|
|
|
|
|
|
|
|
/--
|
|
|
|
|
This demonstrates that the disjointness of the supports of two elements `f` and `g`
|
|
|
|
|
can be proven without knowing anything about how `f` and `g` act on `α`
|
|
|
|
|
(bar the more global properties of the group action).
|
|
|
|
|
|
|
|
|
|
We could prove that the intersection of the algebraic centralizers of `f` and `g` is trivial
|
|
|
|
|
purely within group theory, and then apply this theorem to know that their support
|
|
|
|
|
in `α` will be disjoint.
|
|
|
|
|
--/
|
|
|
|
|
lemma remark_2_3 {f g : G} :
|
|
|
|
|
(AlgebraicCentralizer f) ⊓ (AlgebraicCentralizer g) = ⊥ → Disjoint (Support α f) (Support α g) :=
|
|
|
|
|
by
|
|
|
|
|
intro alg_disj
|
|
|
|
|
rw [disjoint_interiorClosure_iff (support_isOpen _) (support_isOpen _)]
|
|
|
|
|
simp
|
|
|
|
|
repeat rw [<-RegularSupport.def]
|
|
|
|
|
rw [<-rigidStabilizer_inter_bot_iff_regularSupport_disj]
|
|
|
|
|
|
|
|
|
|
repeat rw [<-proposition_2_1]
|
|
|
|
|
exact alg_disj
|
|
|
|
|
|
|
|
|
|
#check proposition_2_1
|
|
|
|
|
lemma rigidStabilizerInter_eq_algebraicCentralizerInter {S : Finset G} :
|
|
|
|
|
RigidStabilizerInter₀ α S = AlgebraicCentralizerInter₀ S :=
|
|
|
|
|
by
|
|
|
|
|
unfold RigidStabilizerInter₀
|
|
|
|
|
unfold AlgebraicCentralizerInter₀
|
|
|
|
|
simp only [<-proposition_2_1]
|
|
|
|
|
-- conv => {
|
|
|
|
|
-- rhs
|
|
|
|
|
-- congr; intro; congr; intro
|
|
|
|
|
-- rw [proposition_2_1 (α := α)]
|
|
|
|
|
-- }
|
|
|
|
|
|
|
|
|
|
theorem rigidStabilizerBasis_eq_algebraicCentralizerBasis :
|
|
|
|
|
AlgebraicCentralizerBasis G = RigidStabilizerBasis G α :=
|
|
|
|
|
by
|
|
|
|
|
apply le_antisymm <;> intro B B_mem
|
|
|
|
|
any_goals rw [RigidStabilizerBasis.mem_iff]
|
|
|
|
|
any_goals rw [AlgebraicCentralizerBasis.mem_iff]
|
|
|
|
|
any_goals rw [RigidStabilizerBasis.mem_iff] at B_mem
|
|
|
|
|
any_goals rw [AlgebraicCentralizerBasis.mem_iff] at B_mem
|
|
|
|
|
|
|
|
|
|
all_goals let ⟨⟨seed, B_ne_bot⟩, B_eq⟩ := B_mem
|
|
|
|
|
|
|
|
|
|
any_goals rw [RigidStabilizerBasis₀.val_def] at B_eq
|
|
|
|
|
any_goals rw [AlgebraicCentralizerBasis₀.val_def] at B_eq
|
|
|
|
|
all_goals simp at B_eq
|
|
|
|
|
all_goals rw [<-B_eq]
|
|
|
|
|
|
|
|
|
|
rw [<-rigidStabilizerInter_eq_algebraicCentralizerInter (α := α)] at B_ne_bot
|
|
|
|
|
swap
|
|
|
|
|
rw [rigidStabilizerInter_eq_algebraicCentralizerInter (α := α)] at B_ne_bot
|
|
|
|
|
|
|
|
|
|
all_goals use ⟨seed, B_ne_bot⟩
|
|
|
|
|
|
|
|
|
|
symm
|
|
|
|
|
all_goals apply rigidStabilizerInter_eq_algebraicCentralizerInter
|
|
|
|
|
|
|
|
|
|
end RegularSupport
|
|
|
|
|
|
|
|
|
|
section HomeoGroup
|
|
|
|
|
|
|
|
|
|
open Topology
|
|
|
|
|
|
|
|
|
|
variable {G α : Type _} [Group G] [TopologicalSpace α] [T2Space α]
|
|
|
|
|
variable [MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α] [LocallyMoving G α]
|
|
|
|
|
|
|
|
|
|
theorem exists_compact_closure_of_le_nhds {α : Type _} [TopologicalSpace α] [T2Space α] [LocallyCompactSpace α] (F : Filter α):
|
|
|
|
|
(∃ p : α, F ≤ 𝓝 p) → ∃ S ∈ F, IsCompact (closure S) :=
|
|
|
|
|
by
|
|
|
|
|
intro ⟨p, p_le_nhds⟩
|
|
|
|
|
have ⟨S, S_in_nhds, S_compact⟩ := (compact_basis_nhds p).ex_mem
|
|
|
|
|
use S
|
|
|
|
|
constructor
|
|
|
|
|
exact p_le_nhds S_in_nhds
|
|
|
|
|
rw [IsClosed.closure_eq S_compact.isClosed]
|
|
|
|
|
exact S_compact
|
|
|
|
|
|
|
|
|
|
theorem clusterPt_of_exists_compact_closure {α : Type _} [TopologicalSpace α] [T2Space α] [LocallyCompactSpace α] (F : Filter α) [Filter.NeBot F]:
|
|
|
|
|
(∃ S ∈ F, IsCompact (closure S)) → ∃ p : α, ClusterPt p F :=
|
|
|
|
|
by
|
|
|
|
|
intro ⟨S, S_in_F, clS_compact⟩
|
|
|
|
|
have F_le_principal_S : F ≤ Filter.principal (closure S) := by
|
|
|
|
|
rw [Filter.le_principal_iff]
|
|
|
|
|
apply Filter.sets_of_superset
|
|
|
|
|
exact S_in_F
|
|
|
|
|
exact subset_closure
|
|
|
|
|
let ⟨x, _, F_clusterPt⟩ := clS_compact F_le_principal_S
|
|
|
|
|
use x
|
|
|
|
|
|
|
|
|
|
theorem proposition_3_4_2 {α : Type _} [TopologicalSpace α] [T2Space α] [LocallyCompactSpace α] (F : Ultrafilter α):
|
|
|
|
|
(∃ p : α, ClusterPt p F) ↔ ∃ S ∈ F, IsCompact (closure S) :=
|
|
|
|
|
by
|
|
|
|
|
constructor
|
|
|
|
|
· simp only [Ultrafilter.clusterPt_iff, <-Ultrafilter.mem_coe]
|
|
|
|
|
exact exists_compact_closure_of_le_nhds (F : Filter α)
|
|
|
|
|
· exact clusterPt_of_exists_compact_closure (F : Filter α)
|
|
|
|
|
|
|
|
|
|
end HomeoGroup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
section Ultrafilter
|
|
|
|
|
|
|
|
|
|
variable {G α : Type _}
|
|
|
|
|
variable [Group G]
|
|
|
|
|
variable [TopologicalSpace α] [T2Space α]
|
|
|
|
|
variable [MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α] [LocallyMoving G α]
|
|
|
|
|
|
|
|
|
|
def RSuppSubsets (G : Type _) {α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] (V : Set α) : Set (Set α) :=
|
|
|
|
|
{W ∈ RegularSupportBasis G α | W ⊆ V}
|
|
|
|
|
|
|
|
|
|
def RSuppOrbit {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] (F : Filter α) (H : Subgroup G) : Set (Set α) :=
|
|
|
|
|
{ g •'' W | (g ∈ H) (W ∈ F) }
|
|
|
|
|
|
|
|
|
|
lemma moving_elem_of_open_subset_closure_orbit {U V : Set α} (U_open : IsOpen U) (U_nonempty : Set.Nonempty U)
|
|
|
|
|
{p : α} (U_ss_clOrbit : U ⊆ closure (MulAction.orbit G•[V] p)) :
|
|
|
|
|
∃ h : G, h ∈ G•[V] ∧ h • p ∈ U :=
|
|
|
|
|
by
|
|
|
|
|
have p_in_orbit : p ∈ MulAction.orbit G•[V] p := by simp
|
|
|
|
|
|
|
|
|
|
have ⟨q, ⟨q_in_U, q_in_orbit⟩⟩ := inter_of_open_subset_of_closure
|
|
|
|
|
U_open U_nonempty ⟨p, p_in_orbit⟩ U_ss_clOrbit
|
|
|
|
|
|
|
|
|
|
rw [MulAction.mem_orbit_iff] at q_in_orbit
|
|
|
|
|
let ⟨⟨h, h_in_orbit⟩, hq_eq_p⟩ := q_in_orbit
|
|
|
|
|
simp at hq_eq_p
|
|
|
|
|
|
|
|
|
|
use h
|
|
|
|
|
constructor
|
|
|
|
|
assumption
|
|
|
|
|
rw [hq_eq_p]
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
lemma compact_subset_of_rsupp_basis (G : Type _) {α : Type _}
|
|
|
|
|
[Group G] [TopologicalSpace α] [T2Space α]
|
|
|
|
|
[MulAction G α] [ContinuousConstSMul G α]
|
|
|
|
|
[LocallyCompactSpace α] [HasNoIsolatedPoints α] [LocallyDense G α]
|
|
|
|
|
{U : Set α} (U_in_basis : U ∈ RegularSupportBasis G α):
|
|
|
|
|
∃ V : RegularSupportBasis G α, (closure V.val) ⊆ U ∧ IsCompact (closure V.val) :=
|
|
|
|
|
by
|
|
|
|
|
let ⟨⟨x, x_in_U⟩, _⟩ := (RegularSupportBasis.mem_iff U).mp U_in_basis
|
|
|
|
|
have U_regular : Regular U := RegularSupportBasis.regular U_in_basis
|
|
|
|
|
|
|
|
|
|
let ⟨W, W_compact, x_in_intW, W_ss_U⟩ := exists_compact_subset U_regular.isOpen x_in_U
|
|
|
|
|
have ⟨V, V_in_basis, _, V_ss_intW⟩ := (RegularSupportBasis.isBasis G α).exists_subset_of_mem_open x_in_intW isOpen_interior
|
|
|
|
|
|
|
|
|
|
have clV_ss_W : closure V ⊆ W := by
|
|
|
|
|
calc
|
|
|
|
|
closure V ⊆ closure (interior W) := by
|
|
|
|
|
apply closure_mono
|
|
|
|
|
exact V_ss_intW
|
|
|
|
|
_ ⊆ closure W := by
|
|
|
|
|
apply closure_mono
|
|
|
|
|
exact interior_subset
|
|
|
|
|
_ = W := by
|
|
|
|
|
apply IsClosed.closure_eq
|
|
|
|
|
exact W_compact.isClosed
|
|
|
|
|
|
|
|
|
|
use ⟨V, V_in_basis⟩
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
· exact subset_trans clV_ss_W W_ss_U
|
|
|
|
|
· exact IsCompact.of_isClosed_subset W_compact isClosed_closure clV_ss_W
|
|
|
|
|
|
|
|
|
|
variable [LocallyDense G α] [LocallyCompactSpace α] [HasNoIsolatedPoints α]
|
|
|
|
|
|
|
|
|
|
lemma proposition_3_5_1
|
|
|
|
|
{U : Set α} (U_in_basis : U ∈ RegularSupportBasis G α) (F: Filter α):
|
|
|
|
|
(∃ p ∈ U, F ≤ nhds p)
|
|
|
|
|
→ ∃ V : RegularSupportBasis G α, V.val ⊆ U ∧ RSuppSubsets G V.val ⊆ RSuppOrbit F G•[U] :=
|
|
|
|
|
by
|
|
|
|
|
simp
|
|
|
|
|
intro p p_in_U F_le_nhds_p
|
|
|
|
|
have U_regular : Regular U := RegularSupportBasis.regular U_in_basis
|
|
|
|
|
|
|
|
|
|
-- First, get a neighborhood of p that is a subset of the closure of the orbit of G_U
|
|
|
|
|
have clOrbit_in_nhds := LocallyDense.rigidStabilizer_in_nhds G α U_regular.isOpen p_in_U
|
|
|
|
|
rw [mem_nhds_iff] at clOrbit_in_nhds
|
|
|
|
|
let ⟨V, V_ss_clOrbit, V_open, p_in_V⟩ := clOrbit_in_nhds
|
|
|
|
|
clear clOrbit_in_nhds
|
|
|
|
|
|
|
|
|
|
-- Then, get a nontrivial element from that set
|
|
|
|
|
let ⟨g, g_in_rist, g_ne_one⟩ := LocallyMoving.get_nontrivial_rist_elem (G := G) V_open ⟨p, p_in_V⟩
|
|
|
|
|
|
|
|
|
|
have V_ss_clU : V ⊆ closure U := by
|
|
|
|
|
apply subset_trans
|
|
|
|
|
exact V_ss_clOrbit
|
|
|
|
|
apply closure_mono
|
|
|
|
|
exact orbit_rigidStabilizer_subset p_in_U
|
|
|
|
|
|
|
|
|
|
-- The regular support of g is within U
|
|
|
|
|
have rsupp_ss_U : RegularSupport α g ⊆ U := by
|
|
|
|
|
rw [RegularSupport]
|
|
|
|
|
rw [rigidStabilizer_support] at g_in_rist
|
|
|
|
|
calc
|
|
|
|
|
InteriorClosure (Support α g) ⊆ InteriorClosure V := by
|
|
|
|
|
apply interiorClosure_mono
|
|
|
|
|
assumption
|
|
|
|
|
_ ⊆ InteriorClosure (closure U) := by
|
|
|
|
|
apply interiorClosure_mono
|
|
|
|
|
assumption
|
|
|
|
|
_ ⊆ InteriorClosure U := by
|
|
|
|
|
simp
|
|
|
|
|
rfl
|
|
|
|
|
_ ⊆ _ := by
|
|
|
|
|
apply subset_of_eq
|
|
|
|
|
exact U_regular
|
|
|
|
|
|
|
|
|
|
let T := RegularSupportBasis.fromSingleton (α := α) g g_ne_one
|
|
|
|
|
have T_eq : T.val = RegularSupport α g := by
|
|
|
|
|
unfold_let
|
|
|
|
|
rw [RegularSupportBasis.fromSingleton_val]
|
|
|
|
|
use T.val
|
|
|
|
|
|
|
|
|
|
repeat' apply And.intro
|
|
|
|
|
· -- This statement is equivalent to rsupp(g) ⊆ U
|
|
|
|
|
rw [T_eq]
|
|
|
|
|
exact rsupp_ss_U
|
|
|
|
|
· exact T.prop.left
|
|
|
|
|
· exact T.prop.right
|
|
|
|
|
· intro W W_in_subsets
|
|
|
|
|
simp [RSuppSubsets, T_eq] at W_in_subsets
|
|
|
|
|
let ⟨W_in_basis, W_ss_W⟩ := W_in_subsets
|
|
|
|
|
unfold RSuppOrbit
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
-- We have that W is a subset of the closure of the orbit of G_U
|
|
|
|
|
have W_ss_clOrbit : W ⊆ closure (MulAction.orbit G•[U] p) := by
|
|
|
|
|
rw [rigidStabilizer_support] at g_in_rist
|
|
|
|
|
calc
|
|
|
|
|
W ⊆ RegularSupport α g := by assumption
|
|
|
|
|
_ ⊆ closure (Support α g) := regularSupport_subset_closure_support
|
|
|
|
|
_ ⊆ closure V := by
|
|
|
|
|
apply closure_mono
|
|
|
|
|
assumption
|
|
|
|
|
_ ⊆ _ := by
|
|
|
|
|
rw [<-closure_closure (s := MulAction.orbit _ _)]
|
|
|
|
|
apply closure_mono
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
let ⟨W_nonempty, ⟨W_seed, W_eq⟩⟩ := W_in_basis
|
|
|
|
|
have W_regular := RegularSupportBasis.regular W_in_basis
|
|
|
|
|
|
|
|
|
|
-- So we can get an element `h` such that `h • p ∈ W` and `h ∈ G_U`
|
|
|
|
|
let ⟨h, h_in_rist, hp_in_W⟩ := moving_elem_of_open_subset_closure_orbit W_regular.isOpen W_nonempty W_ss_clOrbit
|
|
|
|
|
|
|
|
|
|
use h
|
|
|
|
|
constructor
|
|
|
|
|
exact h_in_rist
|
|
|
|
|
|
|
|
|
|
use h⁻¹ •'' W
|
|
|
|
|
constructor
|
|
|
|
|
swap
|
|
|
|
|
{
|
|
|
|
|
rw [smulImage_mul]
|
|
|
|
|
simp
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
-- We just need to show that h⁻¹ •'' W ∈ F, that is, h⁻¹ •'' W ∈ 𝓝 p
|
|
|
|
|
apply F_le_nhds_p
|
|
|
|
|
|
|
|
|
|
have basis := (RegularSupportBasis.isBasis G α).nhds_hasBasis (a := p)
|
|
|
|
|
rw [basis.mem_iff]
|
|
|
|
|
use h⁻¹ •'' W
|
|
|
|
|
repeat' apply And.intro
|
|
|
|
|
· rw [smulImage_nonempty]
|
|
|
|
|
assumption
|
|
|
|
|
· simp only [smulImage_inv, inv_inv]
|
|
|
|
|
have dec_eq : DecidableEq G := Classical.typeDecidableEq G
|
|
|
|
|
use Finset.image (fun g => h⁻¹ * g * h) W_seed
|
|
|
|
|
rw [<-RegularSupport.FiniteInter_conj, Finset.image_image]
|
|
|
|
|
have fn_eq_id : (fun g => h * g * h⁻¹) ∘ (fun g => h⁻¹ * g * h) = id := by
|
|
|
|
|
ext x
|
|
|
|
|
simp
|
|
|
|
|
group
|
|
|
|
|
rw [fn_eq_id, Finset.image_id]
|
|
|
|
|
exact W_eq
|
|
|
|
|
· rw [mem_smulImage, inv_inv]
|
|
|
|
|
exact hp_in_W
|
|
|
|
|
· exact Eq.subset rfl
|
|
|
|
|
|
|
|
|
|
theorem proposition_3_5_2
|
|
|
|
|
{U : Set α} (F: Filter α) [Filter.NeBot F]:
|
|
|
|
|
(∃ V : RegularSupportBasis G α, V.val ⊆ U ∧ RSuppSubsets G V.val ⊆ RSuppOrbit F G•[U]) → ∃ p ∈ U, ClusterPt p F :=
|
|
|
|
|
by
|
|
|
|
|
intro ⟨⟨V, V_in_basis⟩, ⟨V_ss_U, subsets_ss_orbit⟩⟩
|
|
|
|
|
simp only at V_ss_U
|
|
|
|
|
simp only at subsets_ss_orbit
|
|
|
|
|
|
|
|
|
|
-- Obtain a compact subset of V' in the basis
|
|
|
|
|
let ⟨V', clV'_ss_V, clV'_compact⟩ := compact_subset_of_rsupp_basis G V_in_basis
|
|
|
|
|
|
|
|
|
|
have V'_in_subsets : V'.val ∈ RSuppSubsets G V := by
|
|
|
|
|
unfold RSuppSubsets
|
|
|
|
|
simp
|
|
|
|
|
exact subset_trans subset_closure clV'_ss_V
|
|
|
|
|
|
|
|
|
|
-- V' is in the orbit, so there exists a value `g ∈ G_U` such that `gV ∈ F`
|
|
|
|
|
-- Note that with the way we set up the equations, we obtain `g⁻¹`
|
|
|
|
|
have V'_in_orbit := subsets_ss_orbit V'_in_subsets
|
|
|
|
|
simp [RSuppOrbit] at V'_in_orbit
|
|
|
|
|
let ⟨g, g_in_rist, ⟨W, W_in_F, gW_eq_V⟩⟩ := V'_in_orbit
|
|
|
|
|
|
|
|
|
|
have gV'_in_F : g⁻¹ •'' V' ∈ F := by
|
|
|
|
|
rw [smulImage_inv] at gW_eq_V
|
|
|
|
|
rw [<-gW_eq_V]
|
|
|
|
|
assumption
|
|
|
|
|
have gV'_compact : IsCompact (closure (g⁻¹ •'' V'.val)) := by
|
|
|
|
|
rw [smulImage_closure]
|
|
|
|
|
apply smulImage_compact
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
have ⟨p, p_lim⟩ := clusterPt_of_exists_compact_closure _ ⟨g⁻¹ •'' V'.val, ⟨gV'_in_F, gV'_compact⟩⟩
|
|
|
|
|
use p
|
|
|
|
|
constructor
|
|
|
|
|
swap
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
rw [clusterPt_iff_forall_mem_closure] at p_lim
|
|
|
|
|
specialize p_lim (g⁻¹ •'' V') gV'_in_F
|
|
|
|
|
rw [smulImage_closure, mem_smulImage, inv_inv] at p_lim
|
|
|
|
|
|
|
|
|
|
rw [rigidStabilizer_support, <-support_inv] at g_in_rist
|
|
|
|
|
rw [<-fixed_smulImage_in_support g⁻¹ g_in_rist]
|
|
|
|
|
|
|
|
|
|
rw [mem_smulImage, inv_inv]
|
|
|
|
|
apply V_ss_U
|
|
|
|
|
apply clV'_ss_V
|
|
|
|
|
exact p_lim
|
|
|
|
|
|
|
|
|
|
/--
|
|
|
|
|
# Proposition 3.5
|
|
|
|
|
|
|
|
|
|
This proposition gives an alternative definition for an ultrafilter to converge within a set `U`.
|
|
|
|
|
This alternative definition should be reconstructible entirely from the algebraic structure of `G`.
|
|
|
|
|
--/
|
|
|
|
|
theorem proposition_3_5 {U : Set α} (U_in_basis : U ∈ RegularSupportBasis G α) (F: Ultrafilter α):
|
|
|
|
|
(∃ p ∈ U, ClusterPt p F)
|
|
|
|
|
↔ ∃ V : RegularSupportBasis G α, V.val ⊆ U ∧ RSuppSubsets G V.val ⊆ RSuppOrbit F G•[U] :=
|
|
|
|
|
by
|
|
|
|
|
constructor
|
|
|
|
|
· simp only [Ultrafilter.clusterPt_iff]
|
|
|
|
|
exact proposition_3_5_1 U_in_basis (F : Filter α)
|
|
|
|
|
· exact proposition_3_5_2 (F : Filter α)
|
|
|
|
|
|
|
|
|
|
end Ultrafilter
|
|
|
|
|
|
|
|
|
|
variable {G α : Type _}
|
|
|
|
|
variable [Group G]
|
|
|
|
|
|
|
|
|
|
variable [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α]
|
|
|
|
|
|
|
|
|
|
def IsRigidSubgroup (S : Set G) :=
|
|
|
|
|
S ≠ {1} ∧ ∃ T : Finset G, S = ⨅ (f ∈ T), AlgebraicCentralizer f
|
|
|
|
|
|
|
|
|
|
def IsRigidSubgroup.toSubgroup {S : Set G} (S_rigid : IsRigidSubgroup S) : Subgroup G where
|
|
|
|
|
carrier := S
|
|
|
|
|
mul_mem' := by
|
|
|
|
|
let ⟨_, T, S_eq⟩ := S_rigid
|
|
|
|
|
simp only [S_eq, SetLike.mem_coe]
|
|
|
|
|
apply Subgroup.mul_mem
|
|
|
|
|
one_mem' := by
|
|
|
|
|
let ⟨_, T, S_eq⟩ := S_rigid
|
|
|
|
|
simp only [S_eq, SetLike.mem_coe]
|
|
|
|
|
apply Subgroup.one_mem
|
|
|
|
|
inv_mem' := by
|
|
|
|
|
let ⟨_, T, S_eq⟩ := S_rigid
|
|
|
|
|
simp only [S_eq, SetLike.mem_coe]
|
|
|
|
|
apply Subgroup.inv_mem
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem IsRigidSubgroup.mem_subgroup {S : Set G} (S_rigid : IsRigidSubgroup S) (g : G):
|
|
|
|
|
g ∈ S_rigid.toSubgroup ↔ g ∈ S := by rfl
|
|
|
|
|
|
|
|
|
|
theorem IsRigidSubgroup.toSubgroup_neBot {S : Set G} (S_rigid : IsRigidSubgroup S) :
|
|
|
|
|
S_rigid.toSubgroup ≠ ⊥ :=
|
|
|
|
|
by
|
|
|
|
|
intro eq_bot
|
|
|
|
|
rw [Subgroup.eq_bot_iff_forall] at eq_bot
|
|
|
|
|
simp only [mem_subgroup] at eq_bot
|
|
|
|
|
apply S_rigid.left
|
|
|
|
|
rw [Set.eq_singleton_iff_unique_mem]
|
|
|
|
|
constructor
|
|
|
|
|
· let ⟨S', S'_eq⟩ := S_rigid.right
|
|
|
|
|
rw [S'_eq, SetLike.mem_coe]
|
|
|
|
|
exact Subgroup.one_mem _
|
|
|
|
|
· assumption
|
|
|
|
|
|
|
|
|
|
lemma Subgroup.coe_eq (S T : Subgroup G) :
|
|
|
|
|
(S : Set G) = (T : Set G) ↔ S = T :=
|
|
|
|
|
by
|
|
|
|
|
constructor
|
|
|
|
|
· intro h
|
|
|
|
|
ext x
|
|
|
|
|
repeat rw [<-Subgroup.mem_carrier]
|
|
|
|
|
have h₁ : ∀ S : Subgroup G, (S : Set G) = S.carrier := by intro h; rfl
|
|
|
|
|
repeat rw [h₁] at h
|
|
|
|
|
rw [h]
|
|
|
|
|
· intro h
|
|
|
|
|
rw [h]
|
|
|
|
|
|
|
|
|
|
def IsRigidSubgroup.algebraicCentralizerBasis {S : Set G} (S_rigid : IsRigidSubgroup S) : AlgebraicCentralizerBasis G := ⟨
|
|
|
|
|
S_rigid.toSubgroup,
|
|
|
|
|
by
|
|
|
|
|
rw [AlgebraicCentralizerBasis.mem_iff' _ (IsRigidSubgroup.toSubgroup_neBot S_rigid)]
|
|
|
|
|
let ⟨S', S'_eq⟩ := S_rigid.right
|
|
|
|
|
use S'
|
|
|
|
|
unfold AlgebraicCentralizerInter₀
|
|
|
|
|
rw [<-Subgroup.coe_eq, <-S'_eq]
|
|
|
|
|
rfl
|
|
|
|
|
⟩
|
|
|
|
|
|
|
|
|
|
theorem IsRigidSubgroup.algebraicCentralizerBasis_val {S : Set G} (S_rigid : IsRigidSubgroup S) :
|
|
|
|
|
S_rigid.algebraicCentralizerBasis.val = S_rigid.toSubgroup := rfl
|
|
|
|
|
|
|
|
|
|
section toRegularSupportBasis
|
|
|
|
|
|
|
|
|
|
variable (α : Type _)
|
|
|
|
|
variable [TopologicalSpace α] [MulAction G α] [ContinuousConstSMul G α]
|
|
|
|
|
variable [FaithfulSMul G α] [T2Space α] [LocallyMoving G α]
|
|
|
|
|
|
|
|
|
|
theorem IsRigidSubgroup.has_regularSupportBasis {S : Set G} (S_rigid : IsRigidSubgroup S) :
|
|
|
|
|
∃ (U : RegularSupportBasis G α), G•[U.val] = S :=
|
|
|
|
|
by
|
|
|
|
|
let ⟨S_ne_bot, ⟨T, S_eq⟩⟩ := S_rigid
|
|
|
|
|
rw [S_eq]
|
|
|
|
|
simp only [Subgroup.coe_eq]
|
|
|
|
|
rw [S_eq, <-Subgroup.coe_bot, ne_eq, Subgroup.coe_eq, <-ne_eq] at S_ne_bot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- let T' : Finset (HomeoGroup α) := Finset.map (HomeoGroup.fromContinuous_embedding α) T
|
|
|
|
|
|
|
|
|
|
let T' := RegularSupport.FiniteInter α T
|
|
|
|
|
|
|
|
|
|
have T'_nonempty : Set.Nonempty T' := by
|
|
|
|
|
simp only [RegularSupport.FiniteInter, proposition_2_1 (G := G) (α := α)] at S_ne_bot
|
|
|
|
|
rw [ne_eq, <-rigidStabilizer_iInter_regularSupport', <-ne_eq] at S_ne_bot
|
|
|
|
|
exact rigidStabilizer_neBot S_ne_bot
|
|
|
|
|
|
|
|
|
|
have T'_in_basis : T' ∈ RegularSupportBasis G α := by
|
|
|
|
|
constructor
|
|
|
|
|
assumption
|
|
|
|
|
use T
|
|
|
|
|
|
|
|
|
|
use ⟨T', T'_in_basis⟩
|
|
|
|
|
simp [RegularSupport.FiniteInter]
|
|
|
|
|
rw [rigidStabilizer_iInter_regularSupport']
|
|
|
|
|
simp only [<-proposition_2_1]
|
|
|
|
|
|
|
|
|
|
noncomputable def IsRigidSubgroup.toRegularSupportBasis {S : Set G} (S_rigid : IsRigidSubgroup S) :
|
|
|
|
|
RegularSupportBasis G α
|
|
|
|
|
:= Exists.choose (IsRigidSubgroup.has_regularSupportBasis α S_rigid)
|
|
|
|
|
|
|
|
|
|
theorem IsRigidSubgroup.toRegularSupportBasis_eq {S : Set G} (S_rigid : IsRigidSubgroup S):
|
|
|
|
|
G•[(S_rigid.toRegularSupportBasis α).val] = S :=
|
|
|
|
|
by
|
|
|
|
|
exact Exists.choose_spec (IsRigidSubgroup.has_regularSupportBasis α S_rigid)
|
|
|
|
|
|
|
|
|
|
theorem IsRigidSubgroup.toRegularSupportBasis_regular {S : Set G} (S_rigid : IsRigidSubgroup S):
|
|
|
|
|
Regular (S_rigid.toRegularSupportBasis α).val :=
|
|
|
|
|
by
|
|
|
|
|
apply RegularSupportBasis.regular (G := G)
|
|
|
|
|
exact (toRegularSupportBasis α S_rigid).prop
|
|
|
|
|
|
|
|
|
|
theorem IsRigidSubgroup.toRegularSupportBasis_nonempty {S : Set G} (S_rigid : IsRigidSubgroup S):
|
|
|
|
|
Set.Nonempty (S_rigid.toRegularSupportBasis α).val :=
|
|
|
|
|
by
|
|
|
|
|
exact (Subtype.prop (S_rigid.toRegularSupportBasis α)).left
|
|
|
|
|
|
|
|
|
|
theorem IsRigidSubgroup.toRegularSupportBasis_mono {S T : Set G} (S_rigid : IsRigidSubgroup S)
|
|
|
|
|
(T_rigid : IsRigidSubgroup T) :
|
|
|
|
|
S ⊆ T ↔ (S_rigid.toRegularSupportBasis α : Set α) ⊆ T_rigid.toRegularSupportBasis α :=
|
|
|
|
|
by
|
|
|
|
|
rw [rigidStabilizer_subset_iff G (toRegularSupportBasis_regular _ S_rigid) (toRegularSupportBasis_regular _ T_rigid)]
|
|
|
|
|
constructor
|
|
|
|
|
· intro S_ss_T
|
|
|
|
|
rw [<-IsRigidSubgroup.toRegularSupportBasis_eq (α := α) S_rigid] at S_ss_T
|
|
|
|
|
rw [<-IsRigidSubgroup.toRegularSupportBasis_eq (α := α) T_rigid] at S_ss_T
|
|
|
|
|
simp at S_ss_T
|
|
|
|
|
exact S_ss_T
|
|
|
|
|
· intro Sr_ss_Tr
|
|
|
|
|
-- TODO: clean that up
|
|
|
|
|
have Sr_ss_Tr' : (G•[(toRegularSupportBasis α S_rigid).val] : Set G)
|
|
|
|
|
⊆ G•[(toRegularSupportBasis α T_rigid).val] :=
|
|
|
|
|
by
|
|
|
|
|
simp
|
|
|
|
|
assumption
|
|
|
|
|
rw [IsRigidSubgroup.toRegularSupportBasis_eq (α := α) S_rigid] at Sr_ss_Tr'
|
|
|
|
|
rw [IsRigidSubgroup.toRegularSupportBasis_eq (α := α) T_rigid] at Sr_ss_Tr'
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
theorem IsRigidSubgroup.toRegularSupportBasis_mono' {S T : Set G} (S_rigid : IsRigidSubgroup S)
|
|
|
|
|
(T_rigid : IsRigidSubgroup T) :
|
|
|
|
|
S ⊆ T ↔ (S_rigid.toRegularSupportBasis α : Set α) ⊆ (T_rigid.toRegularSupportBasis α : Set α) :=
|
|
|
|
|
by
|
|
|
|
|
rw [<-IsRigidSubgroup.toRegularSupportBasis_mono]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem IsRigidSubgroup.toRegularSupportBasis_rigidStabilizer {S : Set G} (S_rigid : IsRigidSubgroup S) :
|
|
|
|
|
G•[(S_rigid.toRegularSupportBasis α : Set α)] = S :=
|
|
|
|
|
by
|
|
|
|
|
sorry
|
|
|
|
|
-- TODO: prove that `G•[S_rigid.toRegularSupportBasis] = S`
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem IsRigidSubgroup.toRegularSupportBasis_rigidStabilizer' {S : Set G} (S_rigid : IsRigidSubgroup S) (g : G):
|
|
|
|
|
g ∈ G•[(S_rigid.toRegularSupportBasis α : Set α)] ↔ g ∈ S :=
|
|
|
|
|
by
|
|
|
|
|
rw [<-SetLike.mem_coe, IsRigidSubgroup.toRegularSupportBasis_rigidStabilizer]
|
|
|
|
|
|
|
|
|
|
end toRegularSupportBasis
|
|
|
|
|
|
|
|
|
|
theorem IsRigidSubgroup.conj {U : Set G} (U_rigid : IsRigidSubgroup U) (g : G) : IsRigidSubgroup ((fun h => g * h * g⁻¹) '' U) := by
|
|
|
|
|
have conj_bijective : ∀ g : G, Function.Bijective (fun h => g * h * g⁻¹) := by
|
|
|
|
|
intro g
|
|
|
|
|
constructor
|
|
|
|
|
· intro x y; simp
|
|
|
|
|
· intro x
|
|
|
|
|
use g⁻¹ * x * g
|
|
|
|
|
group
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
· intro H
|
|
|
|
|
apply U_rigid.left
|
|
|
|
|
have h₁ : (fun h => g * h * g⁻¹) '' {1} = {1} := by simp
|
|
|
|
|
rw [<-h₁] at H
|
|
|
|
|
apply (Set.image_eq_image (conj_bijective g).left).mp H
|
|
|
|
|
· let ⟨S, S_eq⟩ := U_rigid.right
|
|
|
|
|
have dec_eq : DecidableEq G := Classical.typeDecidableEq G
|
|
|
|
|
use Finset.image (fun h => g * h * g⁻¹) S
|
|
|
|
|
rw [S_eq]
|
|
|
|
|
simp
|
|
|
|
|
simp only [Set.image_iInter (conj_bijective _), AlgebraicCentralizer.conj]
|
|
|
|
|
|
|
|
|
|
def AlgebraicSubsets (V : Set G) : Set (Subgroup G) :=
|
|
|
|
|
{W ∈ AlgebraicCentralizerBasis G | W ≤ V}
|
|
|
|
|
|
|
|
|
|
def AlgebraicOrbit (F : Filter G) (U : Set G) : Set (Subgroup G) :=
|
|
|
|
|
{ (W_rigid.conj g).toSubgroup | (g ∈ U) (W ∈ F) (W_rigid : IsRigidSubgroup W) }
|
|
|
|
|
|
|
|
|
|
structure RubinFilter (G : Type _) [Group G] where
|
|
|
|
|
-- Issue: It's *really hard* to generate ultrafilters on G that satisfy the other conditions of this rubinfilter
|
|
|
|
|
filter : Ultrafilter G
|
|
|
|
|
|
|
|
|
|
-- Note: the following condition cannot be met by ultrafilters in G,
|
|
|
|
|
-- and doesn't seem to be necessary
|
|
|
|
|
-- rigid_basis : ∀ S ∈ filter, ∃ T ⊆ S, IsRigidSubgroup T
|
|
|
|
|
|
|
|
|
|
-- Equivalent formulation of convergence
|
|
|
|
|
converges : ∀ U ∈ filter,
|
|
|
|
|
IsRigidSubgroup U →
|
|
|
|
|
∃ V : Set G, IsRigidSubgroup V ∧ V ⊆ U ∧ AlgebraicSubsets V ⊆ AlgebraicOrbit filter U
|
|
|
|
|
|
|
|
|
|
-- Only really used to prove that ∀ S : Rigid, T : Rigid, S T ∈ F, S ∩ T : Rigid
|
|
|
|
|
ne_bot : {1} ∉ filter
|
|
|
|
|
|
|
|
|
|
instance : Coe (RubinFilter G) (Ultrafilter G) where
|
|
|
|
|
coe := RubinFilter.filter
|
|
|
|
|
|
|
|
|
|
section Equivalence
|
|
|
|
|
open Topology
|
|
|
|
|
|
|
|
|
|
variable {G : Type _} [Group G]
|
|
|
|
|
variable (α : Type _)
|
|
|
|
|
variable [TopologicalSpace α] [T2Space α] [MulAction G α] [ContinuousConstSMul G α]
|
|
|
|
|
variable [FaithfulSMul G α] [LocallyDense G α] [LocallyCompactSpace α] [HasNoIsolatedPoints α]
|
|
|
|
|
|
|
|
|
|
-- TODO: either see whether we actually need this step, or change these names to something memorable
|
|
|
|
|
-- This is an attempt to convert a RubinFilter G back to an Ultrafilter α
|
|
|
|
|
def RubinFilter.to_action_filter (F : RubinFilter G) : Filter α :=
|
|
|
|
|
⨅ (S : { S : Set G // S ∈ F.filter ∧ IsRigidSubgroup S }), (Filter.principal (S.prop.right.toRegularSupportBasis α))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
instance RubinFilter.to_action_filter_neBot {F : RubinFilter G} [Nonempty α] : Filter.NeBot (F.to_action_filter α) :=
|
|
|
|
|
by
|
|
|
|
|
unfold to_action_filter
|
|
|
|
|
rw [Filter.iInf_neBot_iff_of_directed]
|
|
|
|
|
· intro ⟨S, S_in_F, S_rigid⟩
|
|
|
|
|
simp
|
|
|
|
|
apply IsRigidSubgroup.toRegularSupportBasis_nonempty
|
|
|
|
|
· intro ⟨S, S_in_F, S_rigid⟩ ⟨T, T_in_F, T_rigid⟩
|
|
|
|
|
simp
|
|
|
|
|
use S ∩ T
|
|
|
|
|
have ST_in_F : (S ∩ T) ∈ F.filter := by
|
|
|
|
|
-- rw [<-Ultrafilter.mem_coe]
|
|
|
|
|
apply Filter.inter_mem <;> assumption
|
|
|
|
|
have ST_subgroup : IsRigidSubgroup (S ∩ T) := by
|
|
|
|
|
constructor
|
|
|
|
|
swap
|
|
|
|
|
· let ⟨S_seed, S_eq⟩ := S_rigid.right
|
|
|
|
|
let ⟨T_seed, T_eq⟩ := T_rigid.right
|
|
|
|
|
have dec_eq : DecidableEq G := Classical.typeDecidableEq G
|
|
|
|
|
use S_seed ∪ T_seed
|
|
|
|
|
rw [Finset.iInf_union, S_eq, T_eq]
|
|
|
|
|
simp
|
|
|
|
|
· -- TODO: check if we can't prove this without using F.ne_bot;
|
|
|
|
|
-- we might be able to use convergence
|
|
|
|
|
intro ST_eq_bot
|
|
|
|
|
apply F.ne_bot
|
|
|
|
|
rw [<-ST_eq_bot]
|
|
|
|
|
exact ST_in_F
|
|
|
|
|
-- sorry
|
|
|
|
|
use ⟨ST_in_F, ST_subgroup⟩
|
|
|
|
|
|
|
|
|
|
repeat rw [<-IsRigidSubgroup.toRegularSupportBasis_mono' (α := α)]
|
|
|
|
|
constructor
|
|
|
|
|
exact Set.inter_subset_left S T
|
|
|
|
|
exact Set.inter_subset_right S T
|
|
|
|
|
|
|
|
|
|
-- theorem RubinFilter.to_action_filter_converges' (F : RubinFilter G) :
|
|
|
|
|
-- ∀ U : Set α, U ∈ RegularSupportBasis G α → U ∈ F.to_action_filter →
|
|
|
|
|
-- ∃ V ⊆ F.to_action_filter, V ⊆ U ∧
|
|
|
|
|
|
|
|
|
|
theorem RubinFilter.to_action_filter_mem {F : RubinFilter G} {U : Set G} (U_rigid : IsRigidSubgroup U) :
|
|
|
|
|
U ∈ F.filter ↔ (U_rigid.toRegularSupportBasis α : Set α) ∈ F.to_action_filter α :=
|
|
|
|
|
by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
theorem RubinFilter.to_action_filter_mem' {F : RubinFilter G} {U : Set α} (U_in_basis : U ∈ RegularSupportBasis G α) :
|
|
|
|
|
U ∈ F.to_action_filter α ↔ (G•[U] : Set G) ∈ F.filter :=
|
|
|
|
|
by
|
|
|
|
|
-- trickier to prove but should be possible
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
theorem RubinFilter.to_action_filter_clusterPt [Nonempty α] (F : RubinFilter G) :
|
|
|
|
|
∃ p : α, ClusterPt p (F.to_action_filter α) :=
|
|
|
|
|
by
|
|
|
|
|
have univ_in_basis : Set.univ ∈ RegularSupportBasis G α := by
|
|
|
|
|
rw [RegularSupportBasis.mem_iff]
|
|
|
|
|
simp
|
|
|
|
|
use {}
|
|
|
|
|
simp [RegularSupport.FiniteInter]
|
|
|
|
|
|
|
|
|
|
have univ_rigid : IsRigidSubgroup (G := G) Set.univ := by
|
|
|
|
|
constructor
|
|
|
|
|
simp [Set.eq_singleton_iff_unique_mem]
|
|
|
|
|
exact LocallyMoving.nontrivial_elem G α
|
|
|
|
|
use {}
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
suffices ∃ p ∈ Set.univ, ClusterPt p (F.to_action_filter α) by
|
|
|
|
|
let ⟨p, _, clusterPt⟩ := this
|
|
|
|
|
use p
|
|
|
|
|
|
|
|
|
|
apply proposition_3_5_2 (G := G) (α := α)
|
|
|
|
|
simp
|
|
|
|
|
let ⟨S, S_rigid, _, S_subsets_ss_orbit⟩ := F.converges _ Filter.univ_mem univ_rigid
|
|
|
|
|
|
|
|
|
|
use S_rigid.toRegularSupportBasis α
|
|
|
|
|
constructor
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
unfold RSuppSubsets RSuppOrbit
|
|
|
|
|
simp
|
|
|
|
|
intro T T_in_basis T_ss_S
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let T' := G•[T]
|
|
|
|
|
have T_regular : Regular T := sorry -- easy
|
|
|
|
|
have T'_rigid : IsRigidSubgroup (T' : Set G) := sorry -- provable
|
|
|
|
|
have T'_ss_S : (T' : Set G) ⊆ S := sorry -- using one of our lovely theorems
|
|
|
|
|
|
|
|
|
|
have T'_in_subsets : T' ∈ AlgebraicSubsets S := by
|
|
|
|
|
unfold AlgebraicSubsets
|
|
|
|
|
simp
|
|
|
|
|
constructor
|
|
|
|
|
sorry -- prove that rigid subgroups are in the algebraic centralizer basis
|
|
|
|
|
exact T'_ss_S
|
|
|
|
|
|
|
|
|
|
let ⟨g, _, W, W_in_F, W_rigid, W_conj⟩ := S_subsets_ss_orbit T'_in_subsets
|
|
|
|
|
|
|
|
|
|
use g
|
|
|
|
|
constructor
|
|
|
|
|
sorry -- TODO: G•[univ] = top
|
|
|
|
|
|
|
|
|
|
let W' := W_rigid.toRegularSupportBasis α
|
|
|
|
|
have W'_regular : Regular (W' : Set α) := by
|
|
|
|
|
apply RegularSupportBasis.regular (G := G)
|
|
|
|
|
simp
|
|
|
|
|
use W'
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
rw [<-RubinFilter.to_action_filter_mem]
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
rw [<-rigidStabilizer_eq_iff (α := α) (G := G) ((smulImage_regular _ _).mp W'_regular) T_regular]
|
|
|
|
|
|
|
|
|
|
ext i
|
|
|
|
|
rw [rigidStabilizer_smulImage]
|
|
|
|
|
unfold_let at W_conj
|
|
|
|
|
rw [<-W_conj]
|
|
|
|
|
simp
|
|
|
|
|
constructor
|
|
|
|
|
· intro
|
|
|
|
|
use g⁻¹ * i * g
|
|
|
|
|
constructor
|
|
|
|
|
assumption
|
|
|
|
|
group
|
|
|
|
|
· intro ⟨j, j_in_W, gjg_eq_i⟩
|
|
|
|
|
rw [<-gjg_eq_i]
|
|
|
|
|
group
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
-- theorem RubinFilter.to_action_filter_le_nhds [Nonempty α] (F : RubinFilter G) :
|
|
|
|
|
-- ∃ p : α, (F.to_action_filter α) ≤ 𝓝 p :=
|
|
|
|
|
-- by
|
|
|
|
|
-- let ⟨p, p_clusterPt⟩ := to_action_filter_clusterPt α F
|
|
|
|
|
-- use p
|
|
|
|
|
-- intro S S_in_nhds
|
|
|
|
|
-- rw [(RegularSupportBasis.isBasis G α).mem_nhds_iff] at S_in_nhds
|
|
|
|
|
-- let ⟨T, T_in_basis, p_in_T, T_ss_S⟩ := S_in_nhds
|
|
|
|
|
|
|
|
|
|
-- suffices T ∈ F.to_action_filter α by
|
|
|
|
|
-- apply Filter.sets_of_superset (F.to_action_filter α) this T_ss_S
|
|
|
|
|
|
|
|
|
|
-- rw [RubinFilter.to_action_filter_mem' _ T_in_basis]
|
|
|
|
|
|
|
|
|
|
-- intro S p_in_S S_open
|
|
|
|
|
-- sorry
|
|
|
|
|
|
|
|
|
|
lemma RubinFilter.mem_to_action_filter (F : RubinFilter G) {U : Set G} (U_rigid : IsRigidSubgroup U) :
|
|
|
|
|
U ∈ F.filter ↔ (U_rigid.toRegularSupportBasis α : Set α) ∈ F.to_action_filter α :=
|
|
|
|
|
by
|
|
|
|
|
unfold to_action_filter
|
|
|
|
|
constructor
|
|
|
|
|
· intro U_in_filter
|
|
|
|
|
apply Filter.mem_iInf_of_mem ⟨U, U_in_filter, U_rigid⟩
|
|
|
|
|
intro x
|
|
|
|
|
simp
|
|
|
|
|
· sorry -- pain
|
|
|
|
|
|
|
|
|
|
noncomputable def RubinFilter.to_action_ultrafilter (F : RubinFilter G) [Nonempty α]: Ultrafilter α :=
|
|
|
|
|
Ultrafilter.of (F.to_action_filter α)
|
|
|
|
|
|
|
|
|
|
theorem RubinFilter.to_action_ultrafilter_converges (F : RubinFilter G) [Nonempty α] [LocallyDense G α] [HasNoIsolatedPoints α] [LocallyCompactSpace α] {U : Set G}
|
|
|
|
|
(U_in_F : U ∈ F.filter) (U_rigid : IsRigidSubgroup U):
|
|
|
|
|
∃ p ∈ (U_rigid.toRegularSupportBasis α).val, ClusterPt p (F.to_action_ultrafilter α) :=
|
|
|
|
|
by
|
|
|
|
|
rw [proposition_3_5 (G := G)]
|
|
|
|
|
swap
|
|
|
|
|
{
|
|
|
|
|
apply Subtype.prop (IsRigidSubgroup.toRegularSupportBasis α U_rigid)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let ⟨V, V_rigid, V_ss_U, algsubs_ss_algorb⟩ := F.converges U U_in_F U_rigid
|
|
|
|
|
-- let V' := V_rigid.toSubgroup
|
|
|
|
|
-- TODO: subst V' to simplify the proof?
|
|
|
|
|
|
|
|
|
|
use V_rigid.toRegularSupportBasis α
|
|
|
|
|
constructor
|
|
|
|
|
{
|
|
|
|
|
rw [<-IsRigidSubgroup.toRegularSupportBasis_mono]
|
|
|
|
|
exact V_ss_U
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
unfold RSuppSubsets RSuppOrbit
|
|
|
|
|
simp
|
|
|
|
|
intro S S_in_basis S_ss_V
|
|
|
|
|
-- let ⟨S', S'_eq⟩ := S_in_basis.right
|
|
|
|
|
|
|
|
|
|
have S_regular : Regular S := RegularSupportBasis.regular S_in_basis
|
|
|
|
|
|
|
|
|
|
have S_nonempty : Set.Nonempty S := S_in_basis.left
|
|
|
|
|
|
|
|
|
|
have GS_ss_V : G•[S] ≤ V := by
|
|
|
|
|
rw [<-V_rigid.toRegularSupportBasis_eq (α := α)]
|
|
|
|
|
simp only [Set.le_eq_subset, SetLike.coe_subset_coe]
|
|
|
|
|
rw [<-rigidStabilizer_subset_iff G (α := α) S_regular (IsRigidSubgroup.toRegularSupportBasis_regular _ V_rigid)]
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
-- TODO: show that G•[S] ∈ AlgebraicSubsets V
|
|
|
|
|
have GS_in_algsubs_V : G•[S] ∈ AlgebraicSubsets V := by
|
|
|
|
|
unfold AlgebraicSubsets
|
|
|
|
|
simp
|
|
|
|
|
constructor
|
|
|
|
|
· rw [rigidStabilizerBasis_eq_algebraicCentralizerBasis (α := α)]
|
|
|
|
|
let ⟨S', S'_eq⟩ := S_in_basis.right
|
|
|
|
|
rw [RigidStabilizerBasis.mem_iff' _ (LocallyMoving.locally_moving _ S_regular.isOpen S_nonempty)]
|
|
|
|
|
use S'
|
|
|
|
|
rw [RigidStabilizerInter₀, S'_eq, RegularSupport.FiniteInter, rigidStabilizer_iInter_regularSupport']
|
|
|
|
|
· exact GS_ss_V
|
|
|
|
|
|
|
|
|
|
let ⟨g, g_in_U, W, W_in_F, W_rigid, Wconj_eq_GS⟩ := algsubs_ss_algorb GS_in_algsubs_V
|
|
|
|
|
|
|
|
|
|
use g
|
|
|
|
|
constructor
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
assumption
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
use W_rigid.toRegularSupportBasis α
|
|
|
|
|
constructor
|
|
|
|
|
· apply Ultrafilter.of_le
|
|
|
|
|
rw [<-RubinFilter.mem_to_action_filter]
|
|
|
|
|
assumption
|
|
|
|
|
· rw [<-rigidStabilizer_eq_iff G]
|
|
|
|
|
swap
|
|
|
|
|
{
|
|
|
|
|
rw [<-smulImage_regular (G := G)]
|
|
|
|
|
apply IsRigidSubgroup.toRegularSupportBasis_regular
|
|
|
|
|
}
|
|
|
|
|
swap
|
|
|
|
|
exact S_regular
|
|
|
|
|
|
|
|
|
|
ext i
|
|
|
|
|
rw [rigidStabilizer_smulImage, <-Wconj_eq_GS]
|
|
|
|
|
simp
|
|
|
|
|
constructor
|
|
|
|
|
· intro gig_in_W
|
|
|
|
|
use g⁻¹ * i * g
|
|
|
|
|
constructor; exact gig_in_W
|
|
|
|
|
group
|
|
|
|
|
· intro ⟨j, j_in_W, gjg_eq_i⟩
|
|
|
|
|
rw [<-gjg_eq_i]
|
|
|
|
|
group
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
-- Idea: prove that for every rubinfilter, there exists an associated ultrafilter on α that converges
|
|
|
|
|
|
|
|
|
|
instance RubinFilterSetoid (G : Type _) [Group G] : Setoid (RubinFilter G) where
|
|
|
|
|
r F F' := ∀ (U : Set G), IsRigidSubgroup U →
|
|
|
|
|
((∃ V : Set G, V ≤ U ∧ AlgebraicSubsets V ⊆ AlgebraicOrbit F.filter U)
|
|
|
|
|
↔ (∃ V' : Set G, V' ≤ U ∧ AlgebraicSubsets V' ⊆ AlgebraicOrbit F'.filter U))
|
|
|
|
|
iseqv := by
|
|
|
|
|
constructor
|
|
|
|
|
· intros
|
|
|
|
|
simp
|
|
|
|
|
· intro F F' h
|
|
|
|
|
intro U U_rigid
|
|
|
|
|
symm
|
|
|
|
|
exact h U U_rigid
|
|
|
|
|
· intro F₁ F₂ F₃
|
|
|
|
|
intro h₁₂ h₂₃
|
|
|
|
|
intro U U_rigid
|
|
|
|
|
specialize h₁₂ U U_rigid
|
|
|
|
|
specialize h₂₃ U U_rigid
|
|
|
|
|
exact Iff.trans h₁₂ h₂₃
|
|
|
|
|
|
|
|
|
|
def RubinFilterBasis : Set (Set (RubinFilter G)) :=
|
|
|
|
|
(fun S : Subgroup G => { F : RubinFilter G | (S : Set G) ∈ F.filter }) '' AlgebraicCentralizerBasis G
|
|
|
|
|
|
|
|
|
|
instance : TopologicalSpace (RubinFilter G) := TopologicalSpace.generateFrom RubinFilterBasis
|
|
|
|
|
|
|
|
|
|
def RubinSpace (G : Type _) [Group G] := Quotient (RubinFilterSetoid G)
|
|
|
|
|
|
|
|
|
|
instance : TopologicalSpace (RubinSpace G) := by
|
|
|
|
|
unfold RubinSpace
|
|
|
|
|
infer_instance
|
|
|
|
|
|
|
|
|
|
instance : MulAction G (RubinSpace G) := sorry
|
|
|
|
|
|
|
|
|
|
end Equivalence
|
|
|
|
|
|
|
|
|
|
section Convert
|
|
|
|
|
open Topology
|
|
|
|
|
|
|
|
|
|
variable (G α : Type _)
|
|
|
|
|
variable [Group G]
|
|
|
|
|
variable [TopologicalSpace α] [Nonempty α] [T2Space α] [HasNoIsolatedPoints α] [LocallyCompactSpace α]
|
|
|
|
|
variable [MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α] [LocallyMoving G α] [LocallyDense G α]
|
|
|
|
|
|
|
|
|
|
instance RubinFilter.fromElement_neBot (x : α) : Filter.NeBot (⨅ (S ∈ 𝓝 x), Filter.principal (G•[S] : Set G)) := by sorry
|
|
|
|
|
|
|
|
|
|
noncomputable def RubinFilter.fromElement (x : α) : RubinFilter G where
|
|
|
|
|
filter := @Ultrafilter.of _ (⨅ (S ∈ 𝓝 x), Filter.principal (G•[S] : Set G)) (RubinFilter.fromElement_neBot G α x)
|
|
|
|
|
converges := by
|
|
|
|
|
sorry
|
|
|
|
|
ne_bot := by
|
|
|
|
|
sorry -- this will be fun to try and prove
|
|
|
|
|
|
|
|
|
|
-- Alternate idea: don't try to compute the associated ultrafilter, and only define a predicate?
|
|
|
|
|
theorem RubinFilter.converging_element (F : RubinFilter G) :
|
|
|
|
|
∃ p : α, ClusterPt p (F.to_action_ultrafilter α) :=
|
|
|
|
|
by
|
|
|
|
|
have univ_in_F : Set.univ ∈ F.filter := Filter.univ_mem
|
|
|
|
|
have univ_in_basis : IsRigidSubgroup (G := G) Set.univ := by
|
|
|
|
|
constructor
|
|
|
|
|
sorry -- TODO: prove that Set.univ ≠ {1}, from locallydense
|
|
|
|
|
use {}
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
let ⟨p, p_in_basis, clusterPt_p⟩ := RubinFilter.to_action_ultrafilter_converges α F univ_in_F univ_in_basis
|
|
|
|
|
|
|
|
|
|
use p
|
|
|
|
|
|
|
|
|
|
noncomputable def RubinFilter.toElement (F : RubinFilter G) : α :=
|
|
|
|
|
(F.converging_element G α).choose
|
|
|
|
|
|
|
|
|
|
theorem RubinFilter.toElement_equiv (F F' : RubinFilter G) (equiv : F ≈ F'):
|
|
|
|
|
F.toElement G α = F'.toElement G α :=
|
|
|
|
|
by
|
|
|
|
|
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
theorem rubin' (hα : RubinAction G α) : EquivariantHomeomorph G α (RubinSpace G) where
|
|
|
|
|
toFun := fun x => ⟦RubinFilter.fromElement (G := G) α x⟧
|
|
|
|
|
invFun := fun f => f.liftOn (RubinFilter.toElement G α) (RubinFilter.toElement_equiv G α)
|
|
|
|
|
continuous_toFun := by
|
|
|
|
|
simp
|
|
|
|
|
constructor
|
|
|
|
|
intro S S_open
|
|
|
|
|
rw [<-isOpen_coinduced]
|
|
|
|
|
-- Note the sneaky different IsOpen's
|
|
|
|
|
-- TODO: apply topologicalbasis on both isopen
|
|
|
|
|
sorry
|
|
|
|
|
continuous_invFun := by
|
|
|
|
|
simp
|
|
|
|
|
sorry
|
|
|
|
|
left_inv := by
|
|
|
|
|
intro x
|
|
|
|
|
simp
|
|
|
|
|
sorry
|
|
|
|
|
right_inv := by
|
|
|
|
|
intro F
|
|
|
|
|
nth_rw 2 [<-Quotient.out_eq F]
|
|
|
|
|
rw [Quotient.eq]
|
|
|
|
|
simp
|
|
|
|
|
sorry
|
|
|
|
|
equivariant := by
|
|
|
|
|
simp
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
end Convert
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- Topology can be generated from the disconnectedness of the filters
|
|
|
|
|
|
|
|
|
|
variable {β : Type _}
|
|
|
|
|
variable [TopologicalSpace β] [MulAction G β] [ContinuousConstSMul G β]
|
|
|
|
|
|
|
|
|
|
#check IsOpen.smul
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem rubin (hα : RubinAction G α) (hβ : RubinAction G β) : EquivariantHomeomorph G α β := by
|
|
|
|
|
-- by composing rubin' hα
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
end Rubin
|
|
|
|
|
|
|
|
|
|
end Rubin
|